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Abstract

In repeated interactions, players can use strategies that respond to the outcome of previous

rounds. Much of the existing literature on direct reciprocity assumes that all competing indi-

viduals use the same strategy space. Here, we study both learning and evolutionary dynam-

ics of players that differ in the strategy space they explore. We focus on the infinitely

repeated donation game and compare three natural strategy spaces: memory-1 strategies,

which consider the last moves of both players, reactive strategies, which respond to the last

move of the co-player, and unconditional strategies. These three strategy spaces differ in

the memory capacity that is needed. We compute the long term average payoff that is

achieved in a pairwise learning process. We find that smaller strategy spaces can dominate

larger ones. For weak selection, unconditional players dominate both reactive and memory-

1 players. For intermediate selection, reactive players dominate memory-1 players. Only for

strong selection and low cost-to-benefit ratio, memory-1 players dominate the others. We

observe that the supergame between strategy spaces can be a social dilemma: maximum

payoff is achieved if both players explore a larger strategy space, but smaller strategy

spaces dominate.

Author summary

Direct reciprocity can lead to cooperation between individuals who meet in repeated
encounters. The shadow of the future casts an incentive to cooperate. If I cooperate today,
you may cooperate tomorrow. But if I defect today, you may defect tomorrow. In most
studies of direct reciprocity it is assumed that both players explore the same space of possi-
ble strategies. In contrast, here we study interactions between players that use different
strategy spaces and therefore utilize different memory capacities. Surprisingly, we find
that more complex strategy spaces often lose out against simpler ones. The social opti-
mum, however, is achieved if all players use the more complex space. Therefore, the game
between strategy spaces becomes a higher order social dilemma.
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Introduction

Direct reciprocity is a mechanism for the evolution of cooperation [1–3]. It is based on the
insight that people have more of an incentive to cooperate when they meet repeatedly [4, 5].
To formalize this concept, researchers study optimal behavior in games like the repeated pris-
oner’s dilemma [6]. Here, individuals repeatedly decide whether to cooperate or defect with
their co-player. While each player prefers to defect if they only interact once, cooperation
becomes feasible when they interact over multiple rounds [7–9]. Because of its simple struc-
ture, the repeated prisoner’s dilemma has become a main paradigm for conceptualizing reci-
procity [2], and even has applications beyond human behavior [10]. It can explain why
humans exchange favors, but also why stickleback fish alternate in predator scouting [11], or
why vampire bats share food [12].

In repeated games, players can take into account the previous interactions when deciding
what to do next. To make these decisions, player use a strategy, which is a rule that specifies
whether or not to cooperate given the history of the game. Often, the set of feasible strategies is
constrained by how many past decisions the player is able to remember. The most restrictive
assumption is that players do not remember any past events. In that case, they can only use
unconditional strategies, such as cooperating with a probability that is independent of previous
interactions. Alternatively, players may remember the co-player’s last move, which allows
them to use reactive strategies [13]. Although reactive strategies require comparably little
information, examples such as Tit-for-Tat [5] and Generous Tit-for-Tat [14, 15] indicate that
they are remarkably successful in sustaining cooperation. When players take into account both
their own and their co-player’s previous move, we speak of memory-1 strategies. Among
memory-1 strategies, players often learn to adopt a simple rule termed win-stay lose-shift [16,
17]. Similarly successful strategies can be identified among memory-2 strategies [18], and
more generally among memory-n strategies [19, 20].

To explore the impact of memory on the evolution of cooperation, much of the existing lit-
erature assumes that all population members use the same strategy space and thus have the
same memory capacity. This work suggests that cooperation is the more likely to evolve the
more rounds players remember [18–22]. When interactions take place in an entire population,
longer memory can also help players to learn and to classify their co-players’ strategies. This
can be advantageous if it allows players to adapt their own strategy to the population’s overall
strategy distribution [23–25].

Interestingly however, there is in contrast less work on how likely cooperation is to evolve
when co-players differ in how much they remember, and whether larger strategy spaces (using
more memory) can emerge in the first place. Press and Dyson [26] argued that no player can
gain an advantage in a repeated prisoner’s dilemma by switching to a higher memory-strategy
when interacting with an opponent using a memory-1 strategy in a fixed game. This finding
led to a stronger focus on memory-1 strategies [27–34]. On the other hand, studies on the co-
evolution of behavior and memory on the same timescale in the context of multiplayer games
suggest that when games are played by few individuals, longer memories can evolve more eas-
ily [35]. This increased memory capacity in turn facilitates cooperation, as players gain access
to a greater set of evolutionary robust cooperative strategies.

Additionally, there is experimental literature on the topic of memory capacity and coopera-
tion supporting the conclusion that a higher capacity for remembering the game’s history
makes players more successful. Such work studied the correlation between cognitive load,
memory or cognitive ability, and performance in a repeated prisoner’s dilemma [36, 37]. It
suggests in fact that a higher cognitive load, for example by giving players an additional memo-
rization task, constrains the human working memory. This then affects decision making,
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leading to players adopting simpler strategies or behaving less strategically in the game. Conse-
quently, players with a high external cognitive load are less successful in a repeated game than
those under low load, due to not being able to commit as many cognitive resources to their
play.

Instead of assuming that all players use the same memory capacity [18–21], or that memory
capacities evolve at a similar pace as the players’ strategies [35], here we study an alternative
framework. In our approach, memory capacities and strategies evolve at different time scales.
In the short run, each player’s strategy space is fixed. Players with possibly different strategy
spaces interact in repeated donation games [2]. They update their strategies given their indi-
vidual constraints. The respective results can be interpreted as a tournament among players
with access to different strategy spaces.

In a second step, we consider the long run dynamics. Here, the players’ strategy spaces can
change in time. To this end, we use the payoffs of the previous tournaments as a proxy for the
payoff of a given strategy space. Using these payoffs, we can study “supergames” between dif-
ferent strategy spaces. By exploring the corresponding replicator dynamics [38], we examine
which strategy space is favored by evolution. A similar argument of separation of timescales
has been used previously in the study of altruism in animal behavior [39] and the evolution of
social dominance [40].

Intuition and previous work [23–25] suggest that larger memory capacities should be
advantageous: since memory is the main resource in repeated interactions, a player with longer
memory should retain a payoff advantage over a shorter-memory opponent. However, in our
model this is not necessarily the case. Instead we find that when cooperation is comparably
costly or when selection is weak, smaller strategy spaces (lower memory) tend to succeed. In
this parameter range, cooperation is generally difficult to achieve. As a consequence, small
strategy spaces are favored because they allow players to more quickly discover strategies that
defect. In such a case, the resulting competition among players with different strategy spaces
can constitute a higher-order social dilemma: each player individually benefits from smaller
strategy space, even if this ultimately favors outcomes that are detrimental to both.

To show these results, we focus in the following on three different strategy spaces that have
different requirements for memory capacity: unconditional strategies, reactive strategies, and
memory-1 strategies.

Results

Repeated games among players with different memory capacity

We consider two players who engage in an infinitely iterated donation game, a special case of a
Prisoner’s Dilemma [2]. In each round, players can choose among two possible actions, coop-
eration (C) and defection (D). A cooperating player pays a cost c to confer a benefit b to the
co-player. A defecting co-player pays no cost and confers no benefit. This results in the payoff
matrix

C D
C

D

b� c �c

b 0

 !
: Ö1Ü

Under the usual assumption that b> c> 0, both players prefer mutual cooperation to
mutual defection, yet each player has a temptation to defect. Players independently choose
their action in each round, governed by their respective strategies. These strategies prescribe
actions based on the history of the game: individuals can recall previous outcomes of their
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encounters with an opponent (Fig 1a); these outcomes affect the actions they choose next (Fig
1b); after each such interaction, individuals update their records for the next round (Fig 1c).

We assume that players have limited memory capacity. This determines how many past
events, i.e. which history length, players can take into account when making their decision. In
the following, we suppose that players remember at most the outcome of the previous round.
We refer to the corresponding set of strategies as the space of memory-1 strategies,M
(Fig 1d):

M à f pàÖpCC; pCD; pDC; pDDÜ j 0pij1 g: Ö2Ü

These strategies take into account both players’ actions in the previous round for decision
making. An entry pij refers to the player’s probability to cooperate in the next round, if in the
previous round the focal player chose action i and the co-player chose action j. One example of
such a strategy is win-stay lose-shift, WSLS = (1, 0, 0, 1), which cooperates if and only if either
both players cooperated in the previous round or if no one did [16]. Past work [16, 20] indi-
cates that WSLS frequently evolves among memory-1 players, and that it is robust against inva-
sion by any other strategy when c< b/2.

In addition to memory-1 strategies, there is also a substantial literature on players who only
remember the co-player’s previous action [14, 41–45]. We refer to the respective set of reactive
strategies asR (Fig 1e):

R à f p2M j pCCàpDC; pDCàpDD g: Ö3Ü

Fig 1. Direct reciprocity among players with different memory capacities. a-c, Models of direct reciprocity assume that two or more players repeatedly
engage in a social dilemma. In each round t, players can either cooperate (C) or defect (D). To make these decisions, players keep a record of what happened in
previous rounds. Based on these records, they decide whether or not to cooperate in the current round. After each round, players update their private records.
These records may be constrained by how much players remember. Here we distinguish three memory spaces. d, Memory-1 players (M) remember both their
own and their co-player’s previous action. e, Reactive players (R) only remember their co-player’s previous action. f, Unconditional players (U) keep no
records at all. The example in the first row illustrates an interaction between a memory-1 player with strategy WSLS [16] against a reactive player with strategy
TFT [5].

https://doi.org/10.1371/journal.pcbi.1010149.g001
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Strategies inR can be represented as those memory-1 strategies that do not condition their
behavior on their own previous move. An important example of a reactive strategy is Tit-for-
Tat [5] (TFT), for which pXC = 1 and pXD = 0. Another well-known example is Generous Tit-
for-Tat [14, 15] (GTFT), for which pXC = 1 and pXD = 1 − c/b.

Finally, we also consider players who do not remember any previous events at all. Such
players choose among all unconditional strategies U (Fig 1f), which can be represented as
those memory-1 strategies that play the same action irrespective of the previous outcome. For-
mally, we have

U à f p2M j pCCàpDCàpDCàpDD g: Ö4Ü

The set U contains, for example, ALLC (for which pXX = 1) and ALLD (for which pXX = 0). By
definition, U ⇢ R ⇢M; any strategy that can be implemented by a low-memory player can
also be implemented by a higher-memory player.

We note that the general framework can be easily extended to larger memory capacities.
However, the size of the respective strategy spaces increases exponentially [20]. Additionally,
apart from yielding good approximations to actual human and animal behavior [46, 47], the
space of memory-1 strategies (and its subspaces) has the advantage that payoffs can be com-
puted explicitly. More specifically, suppose the first player adopts the strategy p, and the sec-
ond player uses the strategy q, with p, q 2 fM;R;Ug. Then the players’ payoffs in the
repeated donation game can be calculated by representing the game as a Markov chain. We
describe this approach in the Methods.

Learning among players with fixed memory capacities

To explore how the players’ memory capacity affects the evolutionary dynamics, we consider
two given players, player 1 and player 2. Each player i is constrained to choose strategies from
a fixed strategy space Si2fM;R;Ug. In particular, the two players may differ in their mem-
ory capacities; in that case S1 6àS2. Over time, both players explore their strategies to adapt to
their opponent. To model how players adapt their strategies, we use introspection dyamics.
This process has been previously used to model evolution in asymmetric repeated games [48,
49].

According to introspection dynamics, the two players initially start out with random strate-
gies p1 2 S1 and p2 2 S2. In each time step of the learning process, one of the two players, say
player i, is randomly picked and given the opportunity to revise its strategy. To this end, the
player experiments with a randomly chosen new strategy p0i2Si. If the player’s original strat-

egy yields a payoff of πi and the new strategy yields the payoff p0i, player i switches to the new

strategy with probability

% à 1

1á e�bÖp0i�piÜ
; Ö5Ü

Here β� 0 is the strength of selection. It measures to which extent strategies are chosen based
on the payoff they yield. If β is small, we speak of weak selection; in this case, payoffs only have
little influence on the strategies players adopt. Instead, strategy selection is mostly driven by
random chance events (noise). If β is large, we speak of strong selection. In that case, players
only switch to an alternative strategy if it improves their payoff.

We repeat this elementary strategy updating step for many time steps t, with t 2 {1, . . ., T}.

As a result, we obtain a sequence of payoffs ÖpijÖtÜÜ
T
tà1. Here, πij(t) is player i’s payoff against

player j after t time steps, and T is the total number of time steps during which learning takes
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place. Based on this sequence, we compute the time average

�pSiSj à
1

T
XT

tà1

pijÖtÜ: Ö6Ü

We interpret �pij as the average payoff of a player with memory capacity Si against a co-player

with memory capacity Sj. In the following, we explore how these payoffs depend on the play-

ers’ strategy spaces, on the costs and benefits of cooperation, and on the selection strength. To
this end, we set without loss of generality b≔ 1, such that the value of c reflects the cost-to-
benefit ratio c/b of the game.

Tournament results

We first use tournaments to explore pairwise competitions between players with different
memory capacities. For each possible combination Si and Sj, we use simulations to explore

the introspection dynamics when two players with the respective memory spaces compete. We
compare the performance of the two memory spaces by comparing the resulting payoffs �pSiSj
and �pSjSi , as defined by Eq (6).

To gain some intuition, we start with a scenario in which cooperation is relatively cheap (c/
b = 0.2), and in which selection is comparably strong (β = 100, see also Table 1). When we
pitch a memory-1 player against an unconditional player, we observe that the higher-memory
player outcompetes its lower-memory opponent, with �pM;U⇡0:24 compared to �pU;M⇡0:18.

The same qualitative result holds when it is a reactive player that faces an unconditional oppo-
nent, with �pR;U⇡0:25 compared to �pU;R⇡0:14. Surprisingly, however, the ranking reverses

when a memory-1 player faces a reactive opponent, with �pM;R⇡0:38 compared to

�pR;M⇡0:40. Here it is the reactive player with lower memory capacity who wins the competi-

tion. Overall, the reactive player thus wins two out of two pairwise competitions, the memory-
1 player wins one competition, and the unconditional player wins no competition.

In a next step, we have explored the robustness of these findings by systematically varying
the cost-to-benefit ratio between 0.1 and 0.9 (keeping the strength of selection fixed at β =
100). We observe that the overall results remain unchanged (Tables 1 and 2). In particular, for

Table 1. Pairwise competitions of players with different memory spaces. We consider the learning dynamics among players with different memory spaces. Players either
use memory-1 strategies (M), reactive strategies (R) or unconditional strategies (U). Within their respective memory space, players adapt their strategies to their opponent
using introspection dynamics [48, 49] with a selection strength of β = 100. For each combination of memory spaces, we compute the players’ average payoffs according to
Eq (6). The winners of these pairwise comparisons are shown in bold. We find that reactive players outperform both memory-1 opponents and unconditional opponents
for all considered cost values. Simulations are run for T = 109 time steps.

Cost c M : R M : U R : U (b − c)

�pM;R �pR;M �pM;U �pU ;M �pR;U �pU;R

0.1 0.559 0.566 0.370 0.289 0.375 0.235 0.9

0.2 0.377 0.402 0.240 0.177 0.246 0.138 0.8

0.3 0.248 0.288 0.147 0.116 0.156 0.086 0.7

0.4 0.156 0.205 0.087 0.077 0.098 0.054 0.6

0.5 0.091 0.142 0.049 0.052 0.060 0.034 0.5

0.6 0.048 0.094 0.026 0.034 0.036 0.020 0.4

0.7 0.020 0.058 0.012 0.022 0.020 0.011 0.3

0.8 0.004 0.033 0.0035 0.014 0.01 0.006 0.2

0.9 -0.004 0.017 -0.001 0.008 0.004 0.002 0.1

https://doi.org/10.1371/journal.pcbi.1010149.t001

PLOS COMPUTATIONAL BIOLOGY Direct reciprocity between individuals that use different strategy spaces

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010149 June 14, 2022 6 / 29



all c/b ratios considered, the reactive player outcompetes both other strategy spaces. For the
pairwise competition between a memory-1 player and an unconditional opponent, the mem-
ory-1 players win for c/b< 0.5; for c� 0.5, the memory-1 player ranks last (For no parameter
combination, we observe a non-transitive ranking, where each memory space wins exactly one
pairwise competition in a rock paper scissors fashion).

While the previous tournaments take into account how well different strategy spaces per-
form against each other, they ignore a memory space’s performance against itself. To compute
these self payoffs, we run additional simulations in which two players with the same memory
space interact (Table 3). As one may expect from the previous literature [18–21], we find that
with respect to self payoffs, a larger memory capacity tends to be beneficial: two memory-1
players get a larger payoff than two reactive players, who in turn get more than two uncondi-
tional players.

To get an overall measure for a strategy space’s success, we also compute a combined score.
For this combined score, we add up a strategy space’s average payoff against all three possible
strategy spaces (including itself). Based on this combined score, we find that memory-1 strate-
gies outperform the other two memory spaces when cooperation is cheap (when c 0.3). Oth-
erwise, for intermediate to high costs, reactive strategies again come out first.

We have run similar tournaments for various selection strengths, β 2 {1, 10, 100, 1000}; the
respective results are displayed in Tables A-I in S1 Data. In Table 4, we provide an overview.
Similar to before, we consider four complementary measures for a memory space’s success: (i)
the number of wins in a pairwise competition against another memory space, (ii) the overall
payoff (score) against the other two memory spaces, (iii) the memory space’s self-payoff, and
(iv) the combined score, as defined above. When selection is weak (β = 1), we find that mem-
ory-1 strategies typically yield the highest self payoff, yet unconditional strategies succeed with
respect to all other measures. On the other extreme, for strong selection (β = 1000), we find
that memory-1 strategies still yield the highest self-payoff. However, now they can also per-
form well with respect to the other measures, provided cooperation is sufficiently cheap. Only
when cooperation costs exceed a certain threshold, reactive strategies succeed. This threshold
for reactive strategies to succeed is lowest for the number of wins (when c� 0.2), intermediate
for the score (when c� 0.3), and highest for the combined score (when c� 0.8), see Table 4.

We conclude that although memory-1 players tend to obtain the best self payoff, they are
typically outcompeted by co-players with lower memory, especially when selection is weak or

Table 2. Wins and scores in pairwise tournaments. To interpret the results of Table 1, we (i) count how often a memory space wins a pairwise competition, and (ii) we
compute the memory space’s score by adding up its payoff against the two other memory spaces. With respect to both measures, we find again that reactive players outper-
form players using the other two memory spaces. In general, however see that the rankings by wins and total score can differ. For example, for c = 0.5 and c = 0.6, U wins
more often thanM, but ranks last in terms of total score. Parameters are the same as in Table 1.

Cost c Wins Score (b − c)

M R U Ranking M R U Ranking

0.1 1 2 0 R,M, U 0.929 0.941 0.85 R,M, U 0.9

0.2 1 2 0 R,M, U 0.617 0.648 0.315 R,M, U 0.8

0.3 1 2 0 R,M, U 0.395 0.444 0.202 R,M, U 0.7

0.4 1 2 0 R,M, U 0.243 0.303 0.131 R,M, U 0.6

0.5 0 2 1 R, U ,M 0.140 0.202 0.086 R,M, U 0.5

0.6 0 2 1 R, U ,M 0.074 0.13 0.054 R,M, U 0.4

0.7 0 2 1 R, U ,M 0.032 0.078 0.033 R, U,M 0.3

0.8 0 2 1 R, U ,M 0.008 0.043 0.020 R, U,M 0.2

0.9 0 2 1 R, U ,M -0.005 0.021 0.010 R, U,M 0.1

https://doi.org/10.1371/journal.pcbi.1010149.t002
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when cooperation is costly. To make sense of these observations, we note that both weak selec-
tion and costly cooperation make full cooperation difficult to sustain. In such a scenario, it can
be important for players to quickly switch from a fully cooperative strategy to a strategy that
effectively defects. However, for memory-1 players it is comparably difficult to come up with
extreme behaviors. Instead, most random memory-1 strategies lead to intermediate

Table 3. Self scores and combined scores in pairwise tournaments. In addition to the wins and the scores considered in Table 2, we consider two additional measures for
a memory space’s success. A memory space’s self payoff is the payoff two players with the respective memory space obtain against each other. The combined score is the
sum of the memory space’s score and its self payoff. Again, winners are marked in bold face. Across all cooperation costs, we find that memory-1 strategies yield the largest
self payoff. They also achieve the largest combined score if c 0.3; otherwise, for c� 0.4, reactive strategies succeed. Parameters are the same as in Table 1.

Cost c Self payoff Combined score (b − c)

�pM;M �pR;R �pU;U M R U Ranking

0.1 0.664 0.538 0.090 1.593 1.478 0.613 M,R, U 0.9

0.2 0.478 0.382 0.040 1.095 1.030 0.354 M,R, U 0.8

0.3 0.322 0.267 0.023 0.717 0.711 0.226 M,R, U 0.7

0.4 0.210 0.180 0.015 0.453 0.483 0.146 R,M, U 0.6

0.5 0.135 0.114 0.010 0.276 0.316 0.095 R,M, U 0.5

0.6 0.084 0.067 0.0067 0.1582 0.196 0.061 R,M, U 0.4

0.7 0.049 0.035 0.0043 0.0806 0.113 0.038 R,M, U 0.3

0.8 0.024 0.016 0.0025 0.0321 0.059 0.022 R,M, U 0.2

0.9 0.009 0.005 0.001 0.004 0.026 0.011 R, U ,M 0.1

https://doi.org/10.1371/journal.pcbi.1010149.t003

Table 4. Tournament winners for different rankings and selection strengths. We summarize our static results by showing the tournament’s winner for various costs
and selection strengths, with respect to the four different rankings (i) number of wins, (ii) score, (iii) self payoff, and (iv) combined score. Memory-1 strategies typically
obtain the highest self-payoff. However, they only succeed in the other rankings when cooperation is cheap (small c) and when selection is sufficiently strong (large β).

c β = 1 β = 10

Wins Score Self Comb. Wins Score Self Comb.

0.1 U U R U U U R R

0.2 U U M U U U R R

0.3 U U M U U U M R

0.4 U U M U U U M R

0.5 U U M U U U M R

0.6 U U M U U U M R

0.7 U U M U U U M R

0.8 U U M U U U M U

0.9 U U M U U U M U

c β = 100 β = 1000

Wins Score Self Comb. Wins Score Self Comb.

0.1 R R M M M M M M

0.2 R R M M R M M M

0.3 R R M M R R M M

0.4 R R M R R R M M

0.5 R R M R R R M M

0.6 R R M R R R M M

0.7 R R M R R R M M

0.8 R R M R R R M R

0.9 R R M R R R M R

https://doi.org/10.1371/journal.pcbi.1010149.t004

PLOS COMPUTATIONAL BIOLOGY Direct reciprocity between individuals that use different strategy spaces

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010149 June 14, 2022 8 / 29



cooperation rates (Fig 2). In comparison, both reactive and unconditional strategies are better
able to discover extreme strategies with either very low or very high cooperation rates. Accord-
ing to our numerical results, this enhanced flexibility can offer an advantage to lower memory
spaces, especially in parameter regimes in which stable cooperation is rare.

Evolutionary dynamics of memory spaces

After this static tournament approach to study games among players with different memory
capacities, we allow the players’ memory capacities themselves to evolve in time. To this end,

Fig 2. Lower-memory strategies are more likely to discover strategies with extreme cooperation rates. Here, we study the distribution of the players’ cooperation
rates when two players with different memory capacity interact (M vsR,M vs U ,R vs U). In panels a–c, we show that the mean of this distribution stabilizes after at
most t = 10 timesteps, for each combination of memory spaces. In d-f, we present this distribution in the very beginning of the process, when players choose their
strategies uniformly at random from their respective memory space. In g-i, we show how the distribution of cooperation rates changes after 10 time steps of
introspection dynamics (for c = 0.5 and β = 10), which is the time it takes for the difference in average cooperation rates to stabilize. In both cases, we observe that players
with lower memory capacities are more likely to choose strategies with extremal cooperation rates (a cooperation rate close to zero or one). To create this graph, we have
randomly sampled 106 pairs of strategies from the respective memory spaces. For each pair, we have then simulated t = 10 time steps of introspection dynamics. The
curves show the result when we bin the players’ cooperation rates in steps of 0.02 and renormalize (such that the area under each curve is one). The above plots show
marginal distributions for each memory-space. In contrast, S5 and S6 Figs show joint distributions for each possible combination of memory spaces.

https://doi.org/10.1371/journal.pcbi.1010149.g002
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we imagine a large and well mixed population of players. The dynamics takes place on two
time scales.

In the short run, the players’ memory capacity is fixed. Let xM; xR, and xU denote the

respective fractions of players with given memory capacity. These players are then randomly
matched to engage in pairwise tournaments, as in the previous section. As before, if a player
with memory space Si interacts with a co-player with memory space Sj, the resulting payoff is

�pSiSj , as defined by Eq (6). These payoffs can be assembled in a 3 × 3 payoff matrix. Here, each

row corresponds to the memory space Si of the focal player, and each column refers to the
memory space Sj of the opponent, with Si;Sj2fM;R;Ug. The entries of the matrix reflect

the focal player’s payoff against the given opponent.
In the long run, the fractions of players with a given memory capacity may change, depend-

ing on how successful respective players turn out to be. While this change in the players’ mem-
ory capacities could be captured with several dynamical models, here we use standard
replicator dynamics [50] (for details, see Methods). We note however that many of our results
are independent of the specific dynamics we consider. For example, we sometimes find that
one memory space dominates another. In that case, replicator dynamics leads to the extinction
of the dominated strategy space, but so does any other “payoff-monotone” dynamics [51].

In replicator dynamics, if a player’s memory space yields a payoff above the average payoff
in the population, this player is more likely to reproduce. In the special case that players can
only choose among two possible memory spaces, there are three generic scenarios for the
dynamics (Fig 3a): (i) One memory space is globally stable (dominance); (ii) both memory
spaces are locally stable (bistability); and (iii) neither memory space is globally stable, but
instead populations converge to a stable mixture of players with different memory capacities
(coexistence). In the general case that players can choose among three memory spaces the
dynamics can be more complex, but it is still possible to classify all possible qualitative behav-
iors [52].

To exemplify our approach, we first consider a scenario in which cooperation is rather
costly (c = 0.6) and in which selection is comparably weak (β = 10, Fig 3b). For the given
parameter values, the pairwise payoffs can be recovered from the previous tournament results
(Tables D, F in S1 Data); the respective payoff matrix is given by

M R U

M

R

U

0:154 0:106 0:047

0:184 0:140 0:099

0:187 0:121 0:066

0

BBB@

1

CCCA
; Ö7Ü

Based on this payoff matrix, we can analyze the resulting replicator dynamics. To this end, we
first consider the boundaries of the state space (Fig 3c–3e). Here, only two of the three memory
spaces compete; the third memory space is absent from the population. If the population only
consists of reactive and unconditional players, we find that the reactive strategies are globally
stable (Fig 3c). On the other hand, if memory-1 strategies compete with either unconditional
strategies (Fig 3d) or reactive strategies (Fig 3e), it is in each case the lower memory space that
is globally stable. In a next step, we explore the dynamics when all three memory spaces com-
pete simultaneously. In this case, we find that reactive strategies succeed: for any given initial
mixture that consists of all three strategy spaces, the dynamics eventually converges to a mono-
morphic population of reactive players (Fig 3f).
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We note that the final outcome is detrimental to the entire population. Although a homoge-
neous population of memory-1 players is most cooperative (and hence results in maximum
payoffs), such a population is evolutionarily unstable. This type of instability is reflected by the
following chain of inequalities:

�pRM > �pMM > �pRR: Ö8Ü

In such a case, we speak of a “memory dilemma”. Formally, a memory dilemma arises if the
memory space with the largest self payoff (typically the space with the largest memory capac-
ity) can be invaded by a different memory space.

In a next step, we explore how common such memory dilemmas are. To this end, we sys-
tematically vary the two main parameters of the model, the selection strength β and the cost of
cooperation c (Fig 4). This analysis suggests that the occurrence of memory dilemmas is
remarkably robust. In particular, for comparably weak selection (β 10), we find that

Fig 3. Evolutionary dynamics of memory spaces. To explore the evolution of different memory capacities, we use replicator dynamics [50]. Members of a population
can have one of three different memory spaces, memory-1 (M), reactive (R), or unconditional (U). The fraction of population members with a given memory space
changes in time, depending on whether players with this memory space obtain an expected payoff above average. a, When only two memory spaces compete, there are
three possible dynamics: either one space is globally stable (dominance), each space is locally stable (bistability), or the two spaces form a stable mixture (coexistence).
b, Here we illustrate our approach by considering an environment in which cooperation is comparably costly and where selection is relatively weak. c-e, We first
analyze the replicator dynamics for each pair of memory spaces. We find that in a pairwise competition,R dominates both U andM, whereas U dominatesM. f, In a
next step, we study the replicator dynamics among all three memory spaces. For the given parameter values, we find thatR is globally stable: independent of the initial
composition of the population, all trajectories lead towards a monomorphic population of reactive players. Overall, we obtain a ‘memory dilemma’: the memory space
that evolves is not the memory space that maximizes the population’s average payoff.

https://doi.org/10.1371/journal.pcbi.1010149.g003
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memory-1 strategies never evolve, although they typically yield the largest self payoff. In this
parameter regime, evolution instead leads to a homogenous population of unconditional play-
ers, or of reactive players, or to a mixture of unconditional and reactive players (Fig 4a and
4b). Only when selection is sufficiently strong and when cooperation is cheap, memory-1 play-
ers can persist in a population (Fig 4c and 4d). However, even in parameter regimes that allow

Fig 4. A bifurcation analysis of the evolutionary dynamics of memory spaces. We explore the replicator dynamics of
the three different memory spaces for four different selection strengths β. In each case, we first classify the dynamics as
we vary the cooperation cost from c = 0 to c = 1 (left graphs). Here, triangles show representative depictions of the
dynamics. Colors indicate basins of attractions of each possible fixed point. If a given memory space Si is globally stable
in a given cost interval, the respective line segment is appropriately colored. Colored shades around these line segments
indicate a memory dilemma. Second, we also illustrate the average cooperation rate in monomorphic populations for
each of the possible memory spaces (right graphs). If the respective monomorphic population is stable according to
replicator dynamics, we use a solid line; otherwise we use a dashed line. a-d, For weak selection, unconditional strategies
are globally stable for all cost values. As we increase selection strength, memory-1 strategies become stable when
cooperation costs are sufficiently small. For large cooperation costs, reactive strategies are globally stable.

https://doi.org/10.1371/journal.pcbi.1010149.g004
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for a stable monomorphic population of memory-1 players, inefficiencies might still arise if
alternative stable populations exist. For example, for strong selection (β = 1, 000) and an inter-
mediate cost-to-benefit ration (c/b = 0.4), both the memory-1 space and the reactive space are
locally stable. In that case the initial population determines whether the population eventually
adopts the more effective memory-1 space or the less effective reactive space (Fig 4d). The
basin of attraction of the reactive equilibrium increases with the cooperation cost c. Overall,
larger cooperation costs thus increase the likelihood that players settle at an inefficient strategy
space.

These results suggest that within the realms of the repeated donation game, memory dilem-
mas may be surprisingly common. In that case, even if the original dilemma can be avoided
when players evolve a sufficient memory capacity, selection pressures may disfavor the evolu-
tion of the necessary memory capacities in the first place. We find a qualitatively very similar
result when we consider competitions between memory-2 and memory-1 strategies (S7 Fig),
suggesting that this finding holds for more complex spaces as well.

To explore how pervasive memory dilemmas are in repeated games, we have extended our
analysis to a wide range of other games. In addition to the donation game (and the more gen-
eral prisoner’s dilemma), we also consider the stag-hunt, snowdrift and harmony game (Fig 5
and S10 Fig). We find two key results. First, the memory dilemma extends beyond donation
games. In fact, such dilemmas arise frequently when the base game is either a prisoner’s
dilemma or a snowdrift game. Second, we also find interesting instances of a “reverse” mem-
ory dilemma. Here, strategy spaces of lower complexity have the highest self-payoff, yet they
can be invaded by more complex strategy spaces. Such cases mostly arise when the underlying
game is a harmony game, but they also appear in stag hunt games. Overall, these examples sug-
gest that memory dilemmas can arise easily, in different manifestations and across different
types of games.

Model extensions

Our baseline model focuses on illustrating the fundamental process and the resulting dynamics
with a simple setup. We can naturally envision a number of variations of this baseline model.
Such variations aid us in exploring the robustness and limits of our results, and give additional
insight into the origins of the memory dilemma. In this work, we consider three different
main ways of modifying our framework. We present an overview of the effect of these modifi-
cations in S8 and S9 Figs, and present tournament results for both strong (β = 100) and weak
selection (β = 10) in the S1 Data.

In the first major model extension, we explore what happens when we change the method
of sampling candidate strategies in the elementary learning process (cf. Eq (5)). For our base-
line model, we have assumed that individuals generate new strategies with uniform sampling.
That is, when generating a new strategy, each entry p is taken uniformly between [0, 1]. As a
result, extreme strategies (with values close to 0 and 1) are comparably rare. However, our pre-
vious analysis suggests that the memory dilemma arises in part because unconditional and
reactive players are more efficient in generating extreme strategies (Fig 2). To explore the effect
of extreme strategies in more detail, we may consider an alternative sampling scheme. Instead
of uniform sampling, we now assume that a strategy’s entries are taken from a U-shaped distri-
bution (the arcsine distribution). However, when we repeat our simulations with this alterna-
tive sampling scheme, we observe only a small effect on our results (Tables K, Q in S1 Data, S8
(b) and S9(c) Figs). Even when sampling places more weight on extreme behaviors, the lower-
memory spaces typically retain (but not expand) their advantage.
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Fig 5. Evolutionary dynamics of memory spaces for different game structures. We explore whether memory dilemmas are present in games beyond the repeated
Prisoner’s Dilemma by repeating our previous simulations for various game matrices. a, We consider matrices parametrized by v and u. The parameter v varies in the
interval [0, 2], and the parameter u varies in [−1, 1]. We can partition the resulting two dimensional space of game matrices into four quadrants. The lower right
quadrant contains games with a Prisoner’s Dilemma (PD) structure like the donation game, whereas the other quadrants contain the other fundamental social
dilemmas Snowdrift (SG), Harmony (HG), and Stag Hunt (SH) games. For each of these games, we do the same kind of analysis as for the donation games studied
earlier. b, First, we depict the Nash equilibria of the 3 × 3 payoff matrices when the spacesM,R and U compete. For each strategy space, we find parameter regions
where this space is an equilibrium. Additionally, we identify regions in which more than one space is stable. c, Here, we show the strategy space with the highest self-
payoff. Memory-1 strategies tend to get the highest self-payoff in the PD and SH. In the other two game classes, strategy spaces of lower complexity can be more
effective. d, We distinguish two kinds of memory dilemma. In the “classic” one, the strategy space with highest complexity gives the highest self-payoff, but is not a
Nash equilibrium. In the “reverse” one, it is a less complex strategy space that yields the higher self-payoff without being an equilibrium. Both dilemmas also appear in
their “weak” forms when bistabilities occur. Parameters: β = 100, simulations run for T = 109.

https://doi.org/10.1371/journal.pcbi.1010149.g005
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For this extension, we can alternatively envision a different approach to generating new
strategies in a way that is more likely to be beneficial for all players. Here, we assume that play-
ers search for a new strategy until they have found a better one, instead of only getting one
shot per round at revising their strategy. Hence, “bad” strategies are automatically discarded
without negatively affecting a player. Yet, we find that this modification only makes the mem-
ory dilemma stronger, by increasing the difference between the tournament scores of higher
and lower memory (Tables O, U in S1 Data). Additionally, self-payoffs of strategy spaces are
decreased. It appears that as higher memory players actively search for strategies that are more
favorable, they are more likely to only find strategies that are incrementally better. In contrast,
if lower memory finds a better strategy, it is still more likely to be more extreme, leading to an
even stronger difference in payoffs.

In our second main model extension, we consider a separation of memory capacity and
complexity of the strategy space. So far, we have equated a larger memory capacity with higher
strategic complexity, interchangably using “memory space” and “strategy space”. That is, for
our baseline model, we sample one number for unconditional strategies, two numbers for
reactive strategies, and four numbers for memory-1 strategies. Given that our previous analysis
however hinted at lower memory players having an advantage because of the reduced size of
their strategy space, exploring the effect of memory capacity on its own is a relevant research
question. We consider two possible methods of disentangling memory capacity from the size
of the strategy space by ensuring that the size of the sampled strategy space is independent
from the player’s memory capacity.

For the first case of this “same-complexity sampling”, we sample four random numbers (p1,
p2, p3, p4) for each strategy space. Memory-1 strategies are then simply composed of the four
sampled values. The two components (p, q) of reactive strategies are generated by averaging
two values pi each, with p = (p1 + p2)/2 and q = (p3 + p4)/2. Finally, the cooperation rate of a
player using an unconditional strategy is the average of all four values. When we explore this
setup in our simulations, we find that the memory dilemma vanishes for all values of c (S8(d)
and S9(e) Figs). Memory-1 players now fully outperform lower memory players (Tables M, S
in S1 Data). This means that once lower memory players are no longer able to efficiently
instantiate extreme behaviors, they lose their ability to win against higher memory strategies.
Consequently, this modification resolves the memory dilemma.

For a second variant of same-complexity sampling, we again pick four random numbers for
each strategy space. However, we construct reactive strategies of the form (p, q) in this modifi-
cation in a different way. For the value of p, the player picks the more extreme value out of the
two numbers p1 and p2 (i.e., the number that is closer to the boundary of the interval [0, 1]).
For the value of q, the player takes the more extreme value out of the two numbers p3 and p4.
For unconditional strategies, the player chooses the single most extreme value out of all four
numbers pi. In contrast to the first method, we observe that this variation still lets lower mem-
ory have an advantage (Tables L, R in S1 Data), again giving rise to the memory dilemma (S8
(c) and S9(d) Figs). Both methods thus support our previous claim that the memory dilemma
arises because the strategy spaces differ in how easily they generate extreme behaviors.

As our third main model extension, we consider an alternative to our introspection dynam-
ics. We have previously used this learning process to describe how individuals update their
strategies. Players compare the payoff of their existing strategy to the hypothetical payoff they
would have obtained with an alternative strategy. However, this might be a too restrictive
choice in some cases. Instead, players may also simply adopt strategies by imitation. In that
case, they compare their own payoff to the payoff of the co-player. To allow for such social
learning, we assume that players revise their strategies by imitation with probability α. With
the converse probability (1 − α), players use introspection dynamics. Here, one needs to
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assume that players are able to infer their co-players’ strategies from their observed behaviors.
To this end, we assume that higher memory players can directly imitate and adopt lower mem-
ory players’ strategies. Conversely, when lower memory players imitate a higher memory
player, they adopt the low-memory strategy that is most compatible with the higher memory
player’s behavior. An unconditional player will imitate a memory-1 strategy’s average coopera-
tion probability. Similarly, a reactive player will infer effective values of his strategy compo-
nents p and q, which can also be calculated from the invariant distribution [53]. We find that
this variation leads to a weakening of the memory dilemma. The payoffs of two players of dif-
ferent memory capacity tend to inch closer together as the imitation probability α increases
(Tables N, T in S1 Data). As a result, we find more frequent bistability between higher and
lower memory (S8(e) and S9(f) Figs).

Overall, we note that memory dilemmas remain present for a range of variations, as long as
they do not prevent players of lower memory from coming up with more extreme behaviors
than players with higher memory capacity.

Summary and discussion

Direct reciprocity is an important mechanism for cooperation based on repeated interactions
between players. Individuals who engage in direct reciprocity remember the outcomes of pre-
vious rounds and use this information to decide their action in the next round. This enables
them to conditionally cooperate based on their experiences. How many past interactions a
player remembers is governed by the player’s memory capacity. Previous studies on direct reci-
procity tend to treat a player’s memory capacity as fixed and the same for all individuals [14,
16, 35, 54, 55]. Instead, here we consider competitions between players of different memory
capacity, i.e. with access to strategy spaces of different complexity. Contrary to what one might
expect [18, 21], we find that players with a larger memory are frequently outperformed by
lower-memory players. In particular, the evolution of lower memory capacities can easily
result in a higher-order social dilemma. Although larger memory capacities tend to lead to
higher payoffs in a population, they may be dominated by lower memory.

Existing work on the evolution of memory in games often assumes that memory capacity,
or strategic complexity more generally, evolves at a similar time scale as the players’ strategies
[26, 35]. Instead, here we have considered a setup in which memory capacities evolve at a
slower rate. Strategies change and adapt to a present environment due to cultural evolution,
which has been suggested to act more rapidly on a society [56, 57]. In contrast, an individual’s
memory capacity or its ability to deal with cognitive complexity is typically closely tied to the
much slower acting mechanism of biological evolution [58, 59].

Our analysis has focused on the simplest three memory spaces, which naturally limits our
results. It would be desirable to do the same kind of analysis for more general strategy spaces.
However, we note that the complexity of the respective spaces increases dramatically in the
number of rounds players can remember. While for memory-2 strategies, some results are still
possible (cf. S7 Fig) and show that memory dilemmas exist in this more complex space as well,
already the space of memory-3 strategies includes 264 = 1.8 � 1019 pure (deterministic) strate-
gies. Since our simulations typically introduce between 108 and 109 strategies, a systematic
analysis of all memory-3 strategies is already infeasible, even though a calculation of the indi-
vidual payoffs is possible. We note that there is previous work on simplified strategy spaces
containing higher-memory strategies that only count how often players cooperated, but not at
which time points [20]. This research, however, also suggests that such simplified strategies are
less powerful. For example, they cannot encode behaviors that implicitly depend on the timing
of cooperation. Yet, in some instances it may be important to know whether the two players
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did in fact cooperate (or defect) in the very same round. Thus, this research suggests that sim-
plified strategies may be less effective in sustaining cooperation overall.

Our results are further restricted by the fact that our findings are based on simulations.
While such simulations give interesting insights, an analytical approach could arguably yield a
better understanding of the underlying mechanisms. Yet, analytical results in our model
would require computing an invariant strategy distribution for each pair of considered strategy
spaces. Given that all strategy spaces are continuous and often multidimensional, any suitable
analytical approach is mathematically non-trivial.

We note here however that our conclusions are more general than the specific modelling
choices might suggest. Recent work [60] has explored a similar question of the competition
between memory-1 and reactive strategies without using our two-stage approach to evolution.
Instead, players use adaptive optimization strategies by learning from previous actions, which
is equivalent to an extension of the (deterministic) coupled replicator dynamics for learning.
These dynamics, despite being starkly different to the stochastic introspection dynamics we
use in our model, lead to a result that echoes ours: reactive strategies exploit memory-1 strate-
gies and gain the upper hand when both players learn adaptive strategies, leading to a preda-
tor-prey relationship. This is shown to happen because memory-1 strategies tend to be more
generous towards reactive strategies. This finding is strikingly similar to ours. Hence, this sug-
gests that the observed effect of lower memory winning against higher memory is not driven
by the exact choice of dynamics.

For most of our analysis, we focus on the dynamics in simple donation games, which have
become one of the main paradigms to study reciprocity [3]. However, our analysis is in no way
limited to the particular payoff structure of the donation game. By applying our framework to
a wider range of games, we have found that the presence of memory dilemmas is not restricted
to the repeated donation game, or even the repeated Prisoner’s Dilemma. In fact, memory
dilemmas are a more general feature of repeated games, and can arise in different manifesta-
tions. For example, they can appear as “classic” memory dilemmas, where more complex strat-
egies can be invaded although they yield higher self payoffs. Alternatively, we have also
observed instances of a “reverse” dilemma, where it is the less complex strategies that are
unstable despite generating higher self payoffs (Fig 5).

The fact that remembering less information or having limited knowledge in general can be
advantageous might not be much of a surprise when we consider literature related to “deliber-
ate ignorance” [61, 62]. When deliberate ignorance is at play, not acquiring or otherwise limit-
ing one’s own information can act as a self-commitment or signaling device, which yields a
strategic advantage in scenarios such as negotiation or decision making. A similar phenome-
non has also been observed in animal behavior, such as in competitions between desert spiders
[63]. However, the mechanism behind the advantage of more limited memory in our model is
different from self-commitment or signaling: it rather relates to a decreased complexity of the
strategy space for lower memory. When the space is less complex, finding a defecting strategy
suitable to a hostile environment becomes easier, as a player using this memory space is more
flexible in their exploration (see Fig 2).

Importantly, in our model we do not consider the effects of additional complexity costs as
in previous work [64, 65]. Such complexity costs may further reinforce the evolution of lower
memory spaces. In contrast, we find that larger memory is not disfavored because it is inher-
ently more costly, but because larger memory capacities expand the feasible strategy space. In
this way, they make it harder for evolution to “discover” extreme strategies that are most adap-
tive given the current environment. This aspect is most relevant in hostile environments, in
which individuals are incentivized to discover and to adopt defecting strategies. Our results
thus highlight the dual nature of memory in direct reciprocity. While memory can be an asset

PLOS COMPUTATIONAL BIOLOGY Direct reciprocity between individuals that use different strategy spaces

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010149 June 14, 2022 17 / 29



that allows for sustaining cooperation in favorable conditions, it can also posit a hindrance in
environments in which cooperation is unprofitable.

Methods

To explore the role of memory capacity on cooperation, we consider a model in which the
dynamics unfolds on three different levels (S1 Fig). First, there is the game dynamics. Here,
two players with given strategies are matched to interact in an infinitely repeated donation
game. Second, there is the tournament dynamics. Here two players with given memory capac-
ity are matched, and they are allowed to update their strategies during the tournament. These
strategies are constrained by the players’ respective memory capacities. Finally, there is the
memory dynamics, where also the players’ memory capacities are allowed to evolve. In the fol-
lowing, we describe each level in detail.

Repeated donation game

We consider two players, Player 1 and Player 2, engaging in an infinitely repeated donation
game. In each round, players can either cooperate or defect. The focal player’s payoff are b − c
if both cooperated; −c if only the focal player cooperated and the co-player defected; b if only
the focal player defected and the co-player cooperated, and 0 if both defected. We can collect
these possible payoffs in the following two vectors,

Π1 à Öb� c;�c; b; 0Ü⊺ and Π2 à Öb� c; b;�c; 0Ü⊺: Ö9Ü

To play these repeated games, players can choose strategies from three possible strategy spaces.
These strategy spaces differ in how many past events a player is able to remember. The first
option is that a player remembers both players’ previous actions. This gives rise to the space of
memory-1 strategies

M à f pàÖpCC; pCD; pDC; pDDÜ j 0pij1 g: Ö10Ü

Here, pij is the probability that the focal player cooperates in the next round, given the previous
actions of the focal player and of the co-player were i and j, respectively. The second option is
that players remember only the co-player’s previous action. Formally, this space of reactive
strategies can be identified with the space

R à f p2M j pCCàpDC; pDCàpDD g: Ö11Ü

Here, pXC≔ pCC = pDC is the player’s probability to cooperate, given the co-player cooperated
in the previous round. Finally, players may remember no previous events. In this case, they are
restricted to use unconditional strategies, which can be identified with the set

U à f p2M j pCCàpDCàpDCàpDD g: Ö12Ü

Here, pXC≔ pCC = pDC is the player’s probability to cooperate in any given round. Throughout
the text, we refer to these three sets as either the players’ ‘strategy space’ or as their ‘memory
space’.

If both players use a strategy inM (or one of its subsets), their payoffs can be computed
explicitly [2]. To this end, suppose Player 1 uses strategy p = (pCC, pCD, pDC, pDD) and Player 2
uses strategy q = qCC, qCD, qDC, qDD). Then the repeated donation game can be described as a
Markov chain. The possible states of this Markov chain are the possible outcomes in each
round, CC, CD, DC, DD, where the first letter refers to player 1’s action and the second letter
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to player 2’s action. The transition matrix of this Markov chain is given by

CC CD DC DD
CC

CD

DC

DD

pCCqCC pCCÖ1� qCCÜ Ö1� pCCÜqCC Ö1� pCCÜÖ1� qCCÜ

pCDqDC pCDÖ1� qDCÜ Ö1� pCDÜqDC Ö1� pCDÜÖ1� qDCÜ

pDCqCD pDCÖ1� qCDÜ Ö1� pDCÜqCD Ö1� pDCÜÖ1� qCDÜ

pDDqDD pDDÖ1� qDDÜ Ö1� pDDÜqDD Ö1� pDDÜÖ1� qDDÜ

0

BBBBBBB@

1

CCCCCCCA

: Ö13Ü

Assuming that the transition matrix is primitive (which is true, for example, if the players’
actions are subject to rare implementation errors, such that strategies are never fully determin-
istic), this Markov chain converges to a unique invariant distribution, v = (vCC, vCD, vDC, vDD).
Given this invariant distribution, we can define the players’ payoffs as follows

p1 à v �Π1 and p2 à v �Π2: Ö14Ü

We note that the payoffs of more general memory−k strategies can be computed with analo-
gous Markov chain methods. However, while the respective payoffs can be easily calculated, a
systematic analysis of the respective strategies is out of reach, due to the enormous size of these
strategy spaces.

Alternatively, we can also compute payoffs using the formula of Press and Dyson [26],

p1 à
DÖp; q;Π1Ü
DÖp; q;1Ü and p2 à

DÖp; q;Π2Ü
DÖp; q;1Ü : Ö15Ü

For an arbitrary 4-dimensional vector f≔ (fCC, fCD, fDC, fDD), the term D(p, q, f) is defined as

DÖp; q; fÜ à det

�1á pCCqCC �1á pCC �1á qCC fCC

pCCqDC �1á pCD qDC fCD

pDCqCD pDC �1á qCD fDC

pDDqDD pDD qDD fDD

0

BBBBBBB@

1

CCCCCCCA

: Ö16Ü

This formalism allows us to compute the players’ payoffs, for any generic strategies
p; q2fM;R;Ug.

Tournaments

As a first approach to study games among players with different memory capacities, we con-
sider tournaments. To this end, we suppose the two players’ memory capacities are fixed. As a
result, player 1 can choose among all strategies in the respective memory space S1 and player 2
can choose among all strategies in S2, with S1;S2 2 fM;R;Ug. During these tournaments,
players do not play fixed strategies; rather they learn to adopt new strategies over time while
adapting to their opponent. Here, we note that our study aims to explore what happens when
there are differences between players in terms of their cognitive abilities. In contrast, an
implicit assumption in evolutionary game theory is often that games are symmetric. Players
have the same strategic options and the same things they can remember. In such cases, players
can learn new strategies for example by imitation. Learning processes for players in asymmet-
ric games are less straightforward to model. Here, we use one particular model, introspection
dynamics, which has been used previously to analyze learning in repeated social dilemmas [48,
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49]. Based on this learning dynamics, we define the payoff �pS1S2
of a player with memory

space S1 against a player with memory space S2 by Eq (6).
For the tournament, we compute �pS1S2

for all possible combinations S1;S2 2 fM;R;Ug
by simulating the introspection dynamics for T = 109 time steps. We use four different mea-
sures φÖSiÜ to quantify the overall success of a given memory space Si (Tables 1–4, A–I in S1
Data):

1. The number of (pairwise) wins,

φÖSiÜ à
X

Sj 6àSi

1 �pSi ;Sj��pSj ;Si
: Ö17Ü

Here, 1x is an indicator function. It equals one if the statement x is true; it equals zero
otherwise.

2. The score,

φÖSiÜ à
X

Sj 6àSi

�pSi ;Sj : Ö18Ü

3. The memory space’s self score,

φÖSiÜ à �pSi;Si : Ö19Ü

4. The combined score,

φÖSiÜ à
X

Sj

�pSi ;Sj : Ö20Ü

Evolutionary dynamics of memory spaces

In addition to the previous static analysis, we have also considered a dynamics in which the
players’ memory spaces are a biological trait that can evolve in time. To this end, we consider
an infinite population of players. Each player is equipped with a given memory space. Let xM,

xR, and xU denote the respective proportions with which each memory space is used in the
population. Players are randomly matched to engage in pairwise donation games with fixed
parameters c and β. If a player with memory space Si interacts with a co-player with space Sj,

the player’s payoffs are �pSiSj and �pSjSi , as defined by Eq (6). For the three memory-spaces con-

sidered herein, we can assemble these pairwise payoffs in a 3×3 payoff matrix M

M R U

M

R

U

�pMM �pMR �pMU

�pRM �pRR �pRU

�pUM �pUR �pUU

0

BBB@

1

CCCA
; Ö21Ü

For c 2 {0.1, 0.2. . ., 0.9} and β = {1, 10, 100, 1000}, the respective entries of this matrix can be
taken from the tables Tab. 1–4, A–I in S1 Data. Eq (7) displays an example of this matrix for
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c = 0.6 and β = 10. Similar matrices can be created for any value of c and β; for example, for Fig
4 that shows the bifurcations of the system, we have created c values using a step size of 0.005.

We assume that memory spaces that yield a high payoff become more abundant in the pop-
ulation. Many mathematical models could be used to describe the evolution of strategy spaces;
here, we use the replicator equation [50] to model these long-run dynamics. However, many
of our results are independent of the specific dynamics we consider. For example, if one mem-
ory space is strictly dominated, then the abundance of players who use that strategy space is
expected to decrease for any payoff-monotone dynamics. This includes replicator dynamics
but also many others [51].

The fitness of a trait is proportional to the payoff it gets in the population. That is, the fitness
of memory space Si is

fSi à
X

Sj

�pSiSj � xSj : Ö22Ü

The average fitness in the population �f is then given by

�f à
X

Si

fSi � xSi : Ö23Ü

Based on these two terms, replicator dynamics posits that the proportions of the three memory
spaces change according to the ordinary differential equation

_xSi à xSi ÖfSi � �f Ü Ö24Ü

This replicator equations is defined on the unit simplex S3, which is described by
xMáxRáxU à 1. This unit simplex is represented by triangles in Figs 3 and 4. The corners of

this triangle correspond to homogeneous populations, where xSià1 for some Si. The edges of

the triangle correspond to all populations where one of the three memory spaces is absent,
xSià0 for some Si. Finally, the interior of the simplex corresponds to all population mixtures

where each memory space is adopted by a positive proportion of players. We note that faces of
the simplex as well as the interior are invariant: a strategy that is not there initially will not
appear, and trajectories that start inside the simplex will not reach the boundary in finite time
(although they may converge to it). All vertices of the simplex are rest points/stationary solu-
tions of the dynamics. They can be stable or unstable (see Fig 3a). To illustrate these dynamics,
we use the Dynamo 3S package for Mathematica [66].

In Fig 3, we show an example of the resulting replicator dynamics, for a particular value of
c = 0.6 and β = 10. In Fig 4, we characterize all possible dynamics that occur in our system, for
four different selection strengths, β 2 {1, 10, 100, 1000} and c 2 (0, 1). This figure is comple-
mented by S2 Fig, which illustrates all bifurcations that occur on the boundary of the state
space. Finally, S3 and S4 Figs further generalize these results to cases in which cooperation is
inefficient (c> b = 1), and to cases in which cooperation is individually profitable (c< 0).

Supporting information

S1 Fig. The different conceptual levels of our analysis. We consider dynamics on three dif-
ferent levels. a, The most elementary level is the basic repeated donation game. On this level,
we consider two players with fixed strategies p and q. These strategies are either memory-1
(M), reactive (R), or unconditional (U). Given the strategies, we can compute the players’
payoffs by either simulating the game dynamics, or by using a Markov chain approach. b, On
the next level, we conduct tournaments among players with fixed memory capacity. Here,
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players interact in many pairwise repeated games with the same opponent. Between each
repeated game, players are permitted to update their strategies (subject to their respective
memory constraint). Here, we illustrate the dynamics between a reactive player and an uncon-
ditional player. The space of reactive strategies is 2-dimensional (represented by a square). The
space of unconditional strategies is 1-dimensional (represented by a line segment). The overall
state space can thus be represented by a cube. Dots within this cube represent the players’ strat-
egies at any point of the learning process. By running this learning process for sufficiently
long, we can compute the expected payoff of a reactive player against an unconditional player.
c, Based on these payoffs, we also explore the evolutionary dynamics when the players’ strategy
spaces themselves are subject to evolution. We describe this strategy space dynamics with the
replicator equation. For details, see Methods.
(EPS)

S2 Fig. A pairwise bifurcation analysis of the evolutionary dynamics of strategy spaces.
This figure builds on Fig 4, by clarifying the dynamics on the three boundaries of the unit sim-
plex. That is, for each selection strength β = {1, 10, 100, 1000} and for all cost values c 2 (0, 1)
we show the bifurcations that occur between each pair of strategy spaces,R vs U ,M vsR, and
M vs U .
(EPS)

S3 Fig. The dynamics of strategy spaces beyond the social dilemma case. Here we extend
the analysis shown in Fig 4 by also allowing for cases in which cooperation is individually prof-
itable (c< 0), or when cooperation is inefficient (c> b = 1). In both cases, we find for weak
selection that unconditional strategies are globally stable (indicated by green colors). In con-
trast, for strong selection, memory-1 strategies (red) are dominant when cooperation is indi-
vidually profitable, whereas unconditional strategies remain dominant when cooperation is
inefficient.
(EPS)

S4 Fig. Resulting cooperation rates when the players’ memory capacities are subject to evo-
lution. This figure complements the analysis in Fig 4 by showing the possible cooperation
rates for all c 2 (−1, 2). For strong selection, we observe that all memory spaces yield almost
full cooperation for c< 0, whereas all memory spaces result in almost universal defection
when c> b = 1, as one may expect.
(EPS)

S5 Fig. Joint distribution of cooperation rates among memory-1 and reactive players. Simi-
lar to Fig 2, this figure illustrates the players’ cooperation rates either at their first encounter
(t = 0), or after a few learning steps have taken place (t = 10). Here we consider three scenarios:
both players are reactive; both players are memory-1; or one player is reactive, the other one is
memory-1. Based on this figure, we can make two observations. First, reactive players are
more likely to adopt strategies with extreme cooperation rates. This can be seen, for example,
in panel c, where the cooperation rate of memory-1 players is more closely centered around
50%. Second, in environments in which defection is profitable, reactive players are quicker to
reduce their cooperation rates. This can be seen in panel f. Here, pairs of players are more
likely to be above the diagonal, where the memory-1 player is more cooperative than the reac-
tive player. Parameters are the same as in Fig 2.
(EPS)

S6 Fig. Joint distribution of cooperation rates among memory-1 and unconditional play-
ers. This figure shows the same type of result as the previous figure, but this time illustrating
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the dynamics among memory-1 players and unconditional players. The qualitative results are
similar to the qualitative results of S5 Fig.
(EPS)

S7 Fig. Lower memory outcompetes higher memory also when we allow for memory-2
strategies. a–c, For a fixed value of c = 0.5, the average payoff for a memory-1 player (red)
against another one of their kind evolves to a lower value (a) than the payoff of a memory-2
player (pink) playing against another memory-2 player (b). On the other hand, payoff averages
of memory-1 strategies playing against memory-2 strategies quickly evolve to give the lower
memory player a clear advantage (c) after not even 100 timesteps. Averages are taken over
1000 runs. d, We observe the advantage of memory-1 strategies for values of cost c going from
c = 0.1 to c = 1, with simulations running for 106 timesteps. Parameters: β = 10, b = 1.
(EPS)

S8 Fig. Model extensions. We consider various variations of the baseline model at a fixed cost
value of c = 0.5, under strong selection. a, In our original baseline model, we find a memory
dilemma for these parameter values: the space of reactive strategiesR is the Nash equilibrium,
whereasM gains the highest self-payoff. b, When we sample new strategies from a U-shaped
distribution instead of a uniform distribution, we again find the same memory dilemma. Self-
payoffs are however increased for bothM andR. c, We consider same-complexity sampling
with biasing, where we draw four random values no matter the strategy space, and then con-
struct lower memory strategies by picking the values that are closest to the boundary. To com-
pose reactive strategies, we pick the two most extreme values, and for unconditional strategies,
we pick the one most extreme value. We again find the same memory dilemma as in the base-
line model. Self-payoffs ofR and U are increased. d, We again consider same-complexity sam-
pling that draws four random values no matter the strategy space. For this extension, we
however construct lower memory strategies by averaging two values each (for reactive strate-
gies) or averaging all four values (for unconditional strategies). Now, the memory dilemma
vanishes:M both gains the highest self-payoff and is the Nash equilibrium. e, Players can imi-
tate the opponent’s strategy with probability α = 0.05. Lower-memory players infer the strate-
gies of higher memory players, which can be calculated via the invariant distribution arising
from the repeated game. Here, we find a “weakened” memory dilemma:M andR are bistable,
whileM has the highest self-payoff. Parameters: β = 100, b = 1, simulations run for T = 109.
(EPS)

S9 Fig. The effect of varying the baseline model on the evolutionary dynamics of memory
spaces. a, We consider three levels of classification: the strategy space with the highest self-pay-
off, the strategy space that is the Nash equilibrium or the spaces that are bistable, and the pres-
ence of a memory dilemma, indicated by the Nash equilibrium not matching the highest self-
payoff. We distinguish two kinds of memory dilemma. One is the “classic” memory dilemma,
where higher memory has a higher self-payoff, whereas it is not a Nash equilibrium. The other
is the “reverse” memory dilemma, characterized by lower memory having the highest self-pay-
off, and higher memory being the Nash equilibrium instead. b, In the baseline model, we find
results in accordance with Fig 4: for intermediate values of c, there is a “weak” memory
dilemma in the form of a bistability betweenM andR, whereas for increasing cost, the mem-
ory dilemma becomes stronger, withR being the Nash equilibrium, whileM has the highest
self-payoff. c, U-shaped distribution sampling results in very similar dynamics as the baseline
model. For very low values of c, we see thatM can keep its advantage a bit better. d, When we
do same-complexity sampling with biasing for lower memory strategies, the picture also
remains similar in comparison to the baseline. e, For same-complexity sampling with
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averaging, we see the memory dilemma vanish for every value of c.M has the highest self-pay-
off and also is the Nash equilibrium throughout the entire range of cost values. f, When players
can imitate others’ strategies with probability α = 0.05 either by direct copying or inference,
the memory dilemma is weakened. This means that for a wide range of c-values,M andR are
bistable whileM has the highest self-payoff. Parameters as in the previous figure.
(EPS)

S10 Fig. Evolutionary dynamics of memory spaces for different game structures: Weak
selection. We present a figure analogous to Fig 5, this time for β = 10. Here, a richer variety of
dynamics can unfold. Here, memory dilemmas appear in almost the entire quadrant contain-
ing Prisoner’s Dilemma matrices: eitherR is the Nash equilibrium, or a mixture ofR and U is
stable. We also see memory dilemmas in some Snowdrift games, as well as Stag Hunt games.
On the other hand, reverse dilemmas only show up in their weak form, with a coexistence of
R and U . Parameters: β = 10, simulations run for T = 109.
(EPS)

S1 Data. Tournament results for different selection strengths and model extensions.
Table A. Pairwise competitions under very weak selection. The table shows the same type of
data as Table 1, but using a selection strength of β = 1 instead of β = 100. We find that lower
memory always wins in a pairwise competition, regardless of the value of c. Simulations are
run for T = 109 time steps. Table B. Wins and scores under very weak selection. The table
shows the same type of data as Table 2, but again using a selection strength of β = 1 instead of
β = 100. With respect to both measures, wins and scores, U is always ranked first. Simulations
are run for T = 109 time steps. Table C. Self scores and combined scores under very weak
selection. The table shows the same type of data as Table 3, but for β = 1 instead of β = 100.
The space of memory-1 strategies tends to have the largest self-payoff, but unconditional strat-
egies have the largest combined score across all cost values. Simulations are run for T = 109

time steps. Table D. Pairwise competitions under rather weak selection. The table shows the
same type of data as Table 1, but using a selection strength of β = 10. Similar to the case of very
weak selection, we find that lower memory always wins in a pairwise competition. Simulations
are run for T = 109 time steps. Table E. Wins and scores under rather weak selection. The
table shows the same type of data as Table 2, but using a selection strength of β = 10. Similar to
the case of very weak selection, U is always ranked first. Simulations are run for T = 109 time
steps. Table F. Self scores and combined scores under rather weak selection. The table
shows the same type of data as Table 3, but with β = 10. Again, the space of memory-1 strate-
gies tends to have the largest self-payoff, but reactive and unconditional strategies have the
largest combined score. Simulations are run for T = 109 time steps. Table G. Pairwise compe-
titions under very strong selection. The table shows the same type of data as Table 1, but
using a selection strength of β = 1000. Reactive players always win against unconditional play-
ers. They also win against memory-1 players when c� 0.2. Simulations are run for T = 109

time steps. Table H. Wins and scores under very strong selection. The table shows the same
type of data as Table 2, but using a selection strength of β = 1000. In most cases, reactive strate-
gies rank first with respect to both, wins and score. Simulations are run for T = 109 time steps.
Table I. Self scores and combined scores under very strong selection. The table shows the
same type of data as Table 3, but with β = 1000. Memory-1 strategies have the largest self pay-
off. They also have the largest combined score provided c 0.7. Simulations are run for
T = 109 time steps. Table J. Self scores and combined scores in pairwise tournaments. For
ease of comparison with the data below, we present the data from Table 3 once more. Across
all cooperation costs, we find that memory-1 strategies yield the largest self payoff. They also
achieve the largest combined score if c 0.3; otherwise, for c� 0.4, reactive strategies succeed.
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Simulations are run for T = 109 time steps. Table K. Self scores and combined scores for
Extension 1 under β = 100. The table shows the same type of data as Table 3, but for the
model extension where we sample all strategies from a U-shaped distribution. We find that
memory-1 strategies retain the largest self payoff for each value of c. They also have the largest
combined score for c< 0.4, whereas reactive strategies win for higher values of c. Simulations
are run for T = 109 time steps. Table L. Self scores and combined scores for Extension 2
under β = 100. The table shows the same type of data as Table 3, but for the model extension
where we sample strategies by drawing four values each, and then choosing the value(s) closest
to the boundary for reactive and unconditional strategies. This biases strategies away from 0.5.
We find that memory-1 strategies retain the largest self payoff for each value of c. They also
have the largest combined score for c< 0.3, whereas reactive strategies win for higher values of
c. Simulations are run for T = 109 time steps. Table M. Self scores and combined scores for
Extension 3 under β = 100. The table shows the same type of data as Table 3, but for the
model extension where we sample four values for each strategy space, and average them to
construct lower memory strategies. Reactive strategies are composed by averaging two values
each to get a tuple, whereas unconditional strategies are constructed by averaging all four sam-
pled values to get the player’s cooperation probability. Memory-1 strategies have the largest
self payoff. They also have the largest combined score for all values of c. Simulations are run
for T = 109 time steps. Table N. Self scores and combined scores for Extension 4 under β =
100. The table shows the same type of data as Table 3, but for the model extension where high
memory players imitate their co-player’s strategy with probability α = 0.05, whereas with the
same probability low-memory players infer their co-player’s effective memory strategy. Mem-
ory-1 strategies still have the largest self payoff. They also have the largest combined score for
c> 0.4, whereas reactive strategies win for higher values of c. We note however that compared
to Table 3, the competition is tighter. Simulations are run for T = 109 time steps. Table O. Self
scores and combined scores when players can actively search for better strategies under β =
100. The table shows the same type of data as Table 3, but for the model extension where play-
ers are allowed to search for a new strategy until the mutant is accepted. We find that Mem-
ory-1 strategies still have the largest self payoff. They also have the largest combined score for
c< 0.2, whereas reactive strategies win for higher values of c. Simulations are run for T = 109

time steps. Table P. Self scores and combined scores under rather weak selection. The table
shows the same type of data as Table 3, but with β = 10. Again, the space of memory-1 strate-
gies tends to have the largest self-payoff, but reactive and unconditional strategies have the
largest combined score. Simulations are run for T = 109 time steps. Table Q. Self scores and
combined scores for Extension 1 under β = 10. The table shows the same type of data as
Table 3, but for the model extension where we sample all strategies from a U-shaped distribu-
tion. We find that memory-1 strategies retain the largest self payoff for each value of c. Mean-
while, reactive strategies have the largest combined score for all values of c. Simulations are
run for T = 109 time steps. Table R. Self scores and combined scores for Extension 2 under β
= 10. The table shows the same type of data as Table 3, but for the model extension where we
sample strategies by drawing four values each, and then choosing the value(s) closest to the
boundary for reactive and unconditional strategies. This biases strategies away from 0.5. We
find that memory-1 strategies retain the largest self payoff for c> 0.1. However, reactive strate-
gies have the largest combined score for c< 0.8, whereas unconditional strategies win for
higher values of c. Simulations are run for T = 109 time steps. Table S. Self scores and com-
bined scores for Extension 3 under β = 10. The table shows the same type of data as Table 3,
but for the model extension where we sample four values for each strategy space, and use aver-
aging to construct lower memory strategies. Reactive strategies have the largest self payoff for
most values of c. However, memory-1 has the largest combined score for all values of c.

PLOS COMPUTATIONAL BIOLOGY Direct reciprocity between individuals that use different strategy spaces

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010149 June 14, 2022 25 / 29



Simulations are run for T = 109 time steps. Table T. Self scores and combined scores for
Extension 4 under β = 10. The table shows the same type of data as Table 3, but for the model
extension where high memory players imitate their co-player’s strategy with probability α =
0.05, whereas with the same probability low-memory players infer their co-player’s effective
memory strategy. Memory-1 strategies still have the largest self payoff. However, reactive strat-
egies have the largest combined score for c< 0.9. Simulations are run for T = 109 time steps.
Table U. Self scores and combined scores for Extension 5 under β = 10. The table shows the
same type of data as Table 3, but for the model extension where players are allowed to search
for a new strategy until the mutant is accepted. Memory-1 strategies still have the largest self
payoff except for c = 0.1. However, unconditional strategies have the largest combined score
for all values of c. Simulations are run for T = 109 time steps.
(PDF)
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8. Hilbe C, Šimsa Š, Chatterjee K, Nowak MA. Evolution of cooperation in stochastic games. Nature.
2018; 559(7713):246–249. https://doi.org/10.1038/s41586-018-0277-x PMID: 29973718

PLOS COMPUTATIONAL BIOLOGY Direct reciprocity between individuals that use different strategy spaces

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010149 June 14, 2022 26 / 29



9. van Veelen M, Garcı́a J, Rand DG, Nowak MA. Direct reciprocity in structured populations. Proceedings
of the National Academy of Sciences. 2012; 109(25):9929–9934. https://doi.org/10.1073/pnas.
1206694109 PMID: 22665767

10. Killingback T, Doebeli M. The Continuous Prisoner’s Dilemma and the Evolution of Cooperation through
Reciprocal Altruism with Variable Investment. The American Naturalist. 2002; 160(4):421–438. https://
doi.org/10.1086/342070 PMID: 18707520

11. Milinski M. Tit for tat in sticklebacks and the evolution of cooperation. nature. 1987; 325(6103):433–435.
https://doi.org/10.1038/325433a0 PMID: 3808044

12. Wilkinson GS. Reciprocal food sharing in the vampire bat. Nature. 1984; 308:181–184. https://doi.org/
10.1038/308181a0

13. Nowak MA, Sigmund K. The evolution of stochastic strategies in the prisoner’s dilemma. Acta Applican-
dae Mathematicae. 1990; 20:247–265. https://doi.org/10.1007/BF00049570

14. Nowak MA, Sigmund K. Tit for tat in heterogeneous populations. Nature. 1992; 355:250–253. https://
doi.org/10.1038/355250a0

15. Molander P. The optimal level of generosity in a selfish, uncertain environment. Journal of Conflict Res-
olution. 1985; 29:611–618. https://doi.org/10.1177/0022002785029004004

16. Nowak M, Sigmund K. A strategy of win-stay, lose-shift that outperforms tit-for-tat in the Prisoner’s
Dilemma game. Nature. 1993; 364(6432):56. https://doi.org/10.1038/364056a0 PMID: 8316296

17. Kraines DP, Kraines VY. Learning to cooperate with Pavlov an adaptive strategy for the iterated prison-
er’s dilemma with noise. Theory and Decision. 1993; 35:107–150. https://doi.org/10.1007/BF01074955

18. Hauert C, Schuster HG. Effects of increasing the number of players and memory size in the iterated
Prisoner’s Dilemma: a numerical approach. Proceedings of the Royal Society of London B: Biological
Sciences. 1997; 264(1381):513–519. https://doi.org/10.1098/rspb.1997.0073

19. Lindgren K. Evolutionary dynamics in game-theoretic models. In: Arthur WB, Durlauf SN, Lane DA, edi-
tors. The Economy as an Evolving Complex System II. Reading MA: Addison-Wesley; 1997. p. 337–
368.

20. Hilbe C, Martinez-Vaquero LA, Chatterjee K, Nowak MA. Memory-n strategies of direct reciprocity. Pro-
ceedings of the National Academy of Sciences. 2017; 114(18):4715–4720. https://doi.org/10.1073/
pnas.1621239114 PMID: 28420786

21. Baek SK, Jeong HC, Hilbe C, Nowak MA. Comparing reactive and memory-one strategies of direct reci-
procity. Scientific reports. 2016; 6:25676. https://doi.org/10.1038/srep25676 PMID: 27161141

22. Murase Y, Baek SK. Five rules for friendly rivalry in direct reciprocity. Scientific reports. 2020; 10(1):1–
9. https://doi.org/10.1038/s41598-020-73855-x PMID: 33037241

23. Lee C, Harper M, Fryer D. The art of war: Beyond memory-one strategies in population games. PLoS
One. 2015; 10(3):e0120625. https://doi.org/10.1371/journal.pone.0120625 PMID: 25803576

24. Harper M, Knight V, Jones M, Koutsovoulos G, Glynatsi NE, Campbell O. Reinforcement learning pro-
duces dominant strategies for the Iterated Prisoner’s Dilemma. PLOS ONE. 2017; 12(12):1–33. https://
doi.org/10.1371/journal.pone.0188046 PMID: 29228001

25. Glynatsi NE, Knight VA. Using a theory of mind to find best responses to memory-one strategies. Scien-
tific Reports. 2020; 10(1):1–9. https://doi.org/10.1038/s41598-020-74181-y PMID: 33057134

26. Press WH, Dyson FJ. Iterated Prisoner’s Dilemma contains strategies that dominate any evolutionary
opponent. Proceedings of the National Academy of Sciences. 2012; 109(26):10409–10413. https://doi.
org/10.1073/pnas.1206569109 PMID: 22615375

27. Szolnoki A, Perc M. Evolution of extortion in structured populations. Physical Review E. 2014;
89:022804. https://doi.org/10.1103/PhysRevE.89.022804

28. Hao D, Rong Z, Zhou T. Extortion under uncertainty: Zero-determinant strategies in noisy games. Phys-
ical Review E. 2015; 91(5):052803. https://doi.org/10.1103/PhysRevE.91.052803 PMID: 26066208

29. McAvoy A, Hauert C. Autocratic strategies for iterated games with arbitrary action spaces. Proceedings
of the National Academy of Sciences. 2016; 113(13):3573–3578. https://doi.org/10.1073/pnas.
1520163113 PMID: 26976578

30. Ichinose G, Masuda N. Zero-determinant strategies in finitely repeated games. Journal of Theoretical
Biology. 2018; 438:61–77. https://doi.org/10.1016/j.jtbi.2017.11.002 PMID: 29154776

31. Stewart AJ, Plotkin JB. Collapse of cooperation in evolving games. Proceedings of the National Acad-
emy of Sciences USA. 2014; 111(49):17558—17563. https://doi.org/10.1073/pnas.1408618111 PMID:
25422421

32. Stewart AJ, Plotkin JB. From extortion to generosity, evolution in the Iterated Prisoner’s Dilemma. Pro-
ceedings of the National Academy of Sciences. 2013; 110(38):15348–15353. https://doi.org/10.1073/
pnas.1306246110 PMID: 24003115

PLOS COMPUTATIONAL BIOLOGY Direct reciprocity between individuals that use different strategy spaces

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010149 June 14, 2022 27 / 29



33. Akin E. What you gotta know to play good in the iterated prisoner’s dilemma. Games. 2015; 6(3):175–
190. https://doi.org/10.3390/g6030175

34. Akin E. The iterated prisoner’s dilemma: Good strategies and their dynamics. In: Assani I, editor. Ergo-
dic Theory, Advances in Dynamics. Berlin: de Gruyter; 2016. p. 77–107.

35. Stewart AJ, Plotkin JB. Small groups and long memories promote cooperation. Scientific Reports.
2016; 6:26889. https://doi.org/10.1038/srep26889 PMID: 27247059

36. Milinski M, Wedekind C. Working memory constrains human cooperation in the Prisoner’s Dilemma.
Proceedings of the National Academy of Sciences. 1998; 95(23):13755–13758. https://doi.org/10.
1073/pnas.95.23.13755 PMID: 9811873

37. Duffy S, Smith J. Cognitive load in the multi-player prisoner’s dilemma game: Are there brains in
games? Journal of Behavioral and Experimental Economics. 2014; 51:47–56. https://doi.org/10.1016/j.
socec.2014.01.006

38. Taylor PD, Jonker L. Evolutionarily stable strategies and game dynamics. Mathematical Biosciences.
1978; 40:145–156. https://doi.org/10.1016/0025-5564(78)90077-9
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46. Dal Bó P, Fréchette GR. Strategy choice in the infinitely repeated prisoner’s dilemma. American Eco-
nomic Review. 2019; 109(11):3929–3952. https://doi.org/10.1257/aer.20181480

47. Schweinfurth MK, Call J. Reciprocity: Different behavioural strategies, cognitive mechanisms and psy-
chological processes. Learning and Behavior. 2019; 47:284–301. https://doi.org/10.3758/s13420-019-
00394-5 PMID: 31676946

48. Hauser OP, Hilbe C, Chatterjee K, Nowak MA. Social dilemmas among unequals. Nature. 2019; 572
(7770):524–527. https://doi.org/10.1038/s41586-019-1488-5 PMID: 31413366

49. McAvoy A, Kates-Harbeck J, Chatterjee K, Hilbe C. Evolutionary (in)stability of selifsh learning in
repeated games. arXiv. 2021;2105.06199.

50. Hofbauer J, Sigmund K. Evolutionary Games and Population Dynamics. Cambridge, UK: Cambridge
University Press; 1998.

51. Hofbauer J, Sandholm WH. Survival of dominated strategies under evolutionary dynamics. Theoretical
Economics. 2011; 6(3):341–377. https://doi.org/10.3982/TE771

52. Bomze I. Lotka-Volterra equation and replicator dynamics: A two-dimensional classification. Biological
Cybernetics. 1983; 48:201–211. https://doi.org/10.1007/BF00318088

53. Park PS, Nowak MA, Hilbe C. Cooperation in alternating interactions with memory constraints. Nature
Communications. 2022; 13(737). https://doi.org/10.1038/s41467-022-28336-2 PMID: 35136025

54. Nowak MA, Sigmund K, El-Sedy E. Automata, repeated games and noise. Journal of Mathematical
Biology. 1995; 33(7):703–722. https://doi.org/10.1007/BF00184645

55. Hilbe C, Traulsen A, Sigmund K. Partners or rivals? Strategies for the iterated prisoner’s dilemma.
Games and economic behavior. 2015; 92:41–52. https://doi.org/10.1016/j.geb.2015.05.005 PMID:
26339123

56. Perreault C. The Pace of Cultural Evolution. PLOS ONE. 2012; 7:1–8. https://doi.org/10.1371/journal.
pone.0045150 PMID: 23024804

57. Richerson PJ, Boyd R, Henrich J. Gene-culture coevolution in the age of genomics. Proceedings of the
National Academy of Sciences. 2010; 107(Supplement 2):8985–8992. https://doi.org/10.1073/pnas.
0914631107 PMID: 20445092

PLOS COMPUTATIONAL BIOLOGY Direct reciprocity between individuals that use different strategy spaces

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010149 June 14, 2022 28 / 29



58. Haidle MN. Working Memory Capacity and the Evolution of Modern Cognitive Potential: Implications
from Animal and Early Human Tool Use. Current Anthropology. 2010; 51(S1):S149–S166. https://doi.
org/10.1086/650295

59. Richerson PJ, Boyd R. Not by genes alone: How culture transformed human evolution. University of
Chicago press; 2008.

60. Fujimoto Y, Kaneko K. Exploitation by asymmetry of information reference in coevolutionary learning in
prisoner’s dilemma game; 2021.

61. Hertwig R, Engel C. Deliberate ignorance: Choosing not to know. Strungmann Forum Reports; 2021.

62. Hertwig R, Engel C. Homo ignorans: Deliberately choosing not to know. Perspectives on Psychological
Science. 2016; 11(3):359–372. https://doi.org/10.1177/1745691616635594 PMID: 27217249

63. Hammerstein P, Riechert SE. Payoffs and strategies in territorial contests: ESS analyses of two eco-
types of the spiderAgelenopsis aperta. Evolutionary Ecology. 1988; 2:115–138. https://doi.org/10.1007/
BF02067272

64. van Veelen M, Garcı́a J. In and out of equilibrium II: Evolution in repeated games with discounting and
complexity costs. Games and Economic Behavior. 2019; 115:113–130. https://doi.org/10.1016/j.geb.
2019.02.013

65. Fudenberg D, Maskin E. Evolution and Cooperation in Noisy Repeated Games. The American Eco-
nomic Review. 1990; 80(2):274–279.

66. Sandholm WH, Dokumaci E, Franchetti F. Dynamo: Diagrams for Evolutionary Game Dynamics.

PLOS COMPUTATIONAL BIOLOGY Direct reciprocity between individuals that use different strategy spaces

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010149 June 14, 2022 29 / 29


