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Reciprocity is a principle that guides many aspects of our 
social life1–4. Whenever people repay a favour, write a positive 
evaluation of an online seller or build up trust over multiple 

interactions, they engage in reciprocal behaviour. Previous work 
distinguishes two kinds of reciprocity. Direct reciprocity5–19 means 
that my behaviour towards you depends on what you have done to 
me. Indirect reciprocity20–25 means that my behaviour towards you 
also depends on what you have done to others. Direct reciprocity 
requires that the same individuals interact repeatedly, which enables 
them to respond to their interaction partner in future transactions 
(Fig. 1a). Indirect reciprocity does not require individuals to have 
a joint history of previous interactions, nor does it require them 
to ever meet again. It is solely based on the premise that, by help-
ing someone, you can increase your public standing. This reputa-
tional gain is valuable in future interactions with others (Fig. 1b). 
Experiments suggest that human behaviour is shaped by both 
direct26,27 and indirect reciprocity28–30.

While direct and indirect reciprocity are related, the respec-
tive models are strikingly different. Studies of direct reciprocity5–19 
report substantial cooperation rates even if subjects only remember 
a minimum of information. Successful strategies such as tit-for-tat5 
(TFT) and generous tit-for-tat6 (GTFT) only keep track of the very 
last interaction. In contrast, studies of indirect reciprocity stress that 
cooperation can only be maintained when strategies are sufficiently 
complex21–23. To describe how complex strategies need to be, this 
literature distinguishes different classes of strategies. The most ele-
mentary class are the first-order strategies, where a player’s reputa-
tion only depends on her previous actions. A well-known example 
is image scoring20. Here, reputations are represented by an integer 
score. A player’s score increases when she cooperates, and it drops 
when she defects. Individuals only cooperate with those who have a 
sufficiently high score. Classic image scoring, however, is unstable21. 
After all, individuals have no incentive to retaliate against defectors, 
because this would impede their own score. This instability suggests 
considering second-order strategies. Here, reputations depend on 
not only what an individual did but also to whom. For example, 
when an individual defects against a co-player with a bad reputation,  

this defection may be considered as justified. The hierarchy of strat-
egies can be further extended to third order. Here, players addition-
ally take into account the focal individual’s reputation.

In a landmark study, Ohtsuki and Iwasa explored which strategies 
of up to third order sustain cooperation22. In their study, reputations 
are required to be binary (good or bad), strategies are determinis-
tic (the same behaviour always yields the same reputation) and all 
information is public and mutually agreed upon. Within this setup, 
they show there are no stable first-order strategies that give rise to 
cooperation. However, there are two second-order strategies and six 
third-order strategies that do. These so-called leading eight strate-
gies can sustain cooperation because they allow for more sensible 
judgements than image scoring. At the same time, they require more 
information than most well-known strategies of direct reciprocity.

The two kinds of reciprocity also differ in how susceptible they 
are to misunderstandings and other types of error. Whereas GTFT 
and similar strategies of direct reciprocity are robust with respect to 
noise4,31, the leading eight strategies of indirect reciprocity are not32,33.

Due to such differences, it has been difficult to analyse the 
two modes of reciprocity within a single theoretical framework. 
Previous work has taken two approaches. The first approach is to 
suggest particular strategies that combine elements of direct and 
indirect reciprocity, and to analyse their stability34,35. The second 
approach uses computer simulations to let different strategies com-
pete36–38. Two noteworthy studies of the latter kind are by Nakamaru 
and Kawata37 and Seki and Nakamaru38. They explore the evolution 
of reciprocity when players can fake their own reputation or misrep-
resent the reputation of others. The two studies observe that, when 
outside information becomes unreliable, players tend to ignore it. 
Computational studies, however, make it difficult to compare the 
different kinds of reciprocity directly. They often involve compari-
sons between strategies of different complexity. Moreover, the rela-
tive advantage of each type of reciprocity can only be inferred by 
comparing simulations for specific parameter choices.

Instead, here we propose a framework that can be analysed 
explicitly. For our study, we extend the theory of zero-determinant 
strategies from direct8–16 to indirect reciprocity. This approach 
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allows us to draw analytic conclusions when comparing the two 
mechanisms.

Results
A unified framework of reciprocity. To introduce a model that 
entails both kinds of reciprocity, we consider a population of n 
players. Players engage in the following sequence of interactions: 
In the beginning, two players are randomly drawn from the popu-
lation to interact in one round of the prisoner’s dilemma. In this 
game, each player independently decides whether to cooperate 
(C) or defect (D). Cooperation means paying a cost c > 0 to pro-
vide a benefit b > c for the co-player. After each such interaction, 
with probability d, again two players are randomly drawn from the 
population to engage in another round of the game. Otherwise, 
with probability 1 − d, no further interaction occurs. Once there 
are no more interactions, we calculate the payoffs of each player 
by averaging over all pairwise games in which the respective player 
participated.

To make their decisions, players represent each co-player by 
a separate finite-state automaton. Each automaton has two pos-
sible states, labelled as good (G) and bad (B) as shown in Fig. 1c. 
Players cooperate with those co-players they currently deem good 
and defect against those they consider bad. They update the cur-
rent state of each co-player according to their strategy (y, p, q, λ). 
The parameter y is the initial probability that a co-player is con-
sidered as good, in the absence of any information (Fig. 1d). The 
parameters p (and q), determine the probability of assigning a 

good reputation to a co-player who has just cooperated (defected) 
in a direct interaction (Fig. 1e,f). The parameter λ is a player’s 
receptivity to indirect information. If a co-player interacts with 
a third party, then with probability λ, the focal player updates 
that co-player’s state accordingly. In that case, again the co-player 
obtains a good reputation with probability p or q, depending on 
whether she cooperated or defected (Fig. 1g and Extended Data 
Fig. 1). For simplicity, we assume in the main text that all popu-
lation members observe everybody else’s interactions. However, 
they may misinterpret the outcome of games between others 
with probability ε. When such an observation error occurs, a 
third-party observer mistakenly interprets a player’s cooperation 
as defection, and vice versa.

If λ = 0 for all individuals, players base their decisions entirely 
on their own experience. In that case, our framework reduces to 
the standard model of direct reciprocity with reactive strategies6. 
On the other hand, if λ = 1 for all individuals, then players take 
all interactions of their opponents equally into account, no mat-
ter whether they are directly involved. In that case, our framework 
yields a model of indirect reciprocity among players with stochas-
tic first-order strategies39. It is important to note that even players 
with λ = 1 do not ignore any directly obtained information they may 
have. For example, if the same two individuals are chosen to interact 
for two consecutive rounds, their second-round behaviour will nat-
urally depend on the outcome of the first round. However, in large 
populations in which such consecutive encounters are unlikely, 
the role of direct information on players with λ = 1 becomes negli-
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Fig. 1 | A unifying framework for direct and indirect reciprocity. a, Under direct reciprocity, an individual’s cooperation is returned directly by the 
beneficiary. b, Under indirect reciprocity, cooperation is not returned by the beneficiary but by some observer. c, To model direct and indirect reciprocity 
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The receptivity λ is the probability with which an individual takes third-party interactions of the respective co-player into account. For λ = 0, we obtain a 
model of direct reciprocity. For λ = 1, we obtain a model of indirect reciprocity. While the illustrations depict one-way interactions for simplicity, our model 
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gible. In Supplementary Sect. 6.2, we compare this baseline model 
with an alternative setup where we consider a ‘purified’ version of 
indirect reciprocity. In that alternative setup, players can choose to 
ignore all direct experiences they have, such that they solely rely on 
third-party information. The results of that alternative model are 
similar to the results presented herein.

Our strategy space contains several well-known strategies of 
direct and indirect reciprocity. Examples include TFT = (1, 1, 0, 0), 
GTFT = (1, 1, q, 0), and an elementary image scoring rule40 referred 
to as simple scoring41, SCO = (1, 1, 0, 1). However, our model is more 
general than these previous studies on either direct or indirect reci-
procity in two ways. First, it allows for populations in which some 
players use direct reciprocity (λ = 0) whereas others use indirect rec-
iprocity (λ = 1). Second, it allows players to combine the two modes 
of reciprocity, by choosing 0 < λ < 1. In that case, players always take 
direct experiences into account, but they would occasionally also 
consider a co-player’s interactions with others.

Models of indirect reciprocity often assume ‘public informa-
tion’22,23. This does not only mean that all individuals learn all 
relevant information. Instead, respective models also assume that 
everyone agrees on each co-player’s reputation. Such an assump-
tion can be problematic when individuals receive information from 
independent sources, or when information transmission is noisy33. 
Moreover, even if individuals agree on all past events, they may 
still disagree on which reputation a co-player should have if they 
apply different social norms. Such different assessments can easily 
arise, for example, when some players base their decisions on direct 
reciprocity whereas others use indirect reciprocity. Because we are 
exactly interested in such scenarios, our model is necessarily one 
of ‘private information’, as in Nakamaru and Kawata37 and Seki and 
Nakamaru38. As a result, different players may hold different views 
on any given population member.

Throughout the main text, we will use the above baseline frame-
work to explore the dynamics of direct and indirect reciprocity. 
However, in Supplementary Sect. 6, we explore the effect of several 
model extensions. In particular, we discuss how our results change 
when we allow for alternative kinds of errors42–44 and for incomplete 
information45. Moreover, we describe how our framework can be 
adapted to capture more complex strategies, including finite-state 
automata with more than two states18,46 or the leading eight22.

Equilibrium conditions for reciprocal cooperation. Because the 
strategies of the baseline model only require first-order informa-
tion, we can compute the players’ payoffs explicitly. The respective 
formula, derived in detail in Supplementary Sect. 3, is valid for any 
population size, arbitrary population compositions and all param-
eter values. Based on this explicit representation of payoffs, we first 
characterized all Nash equilibria among the strategies (y, p, q, λ). In 
a Nash equilibrium, no player can improve her payoff by deviating 
unilaterally (not even by using a more complex strategy that uses 
arbitrary amounts of past information). By extending the theory 
of zero-determinant strategies8–12, we find that, for every λ ∈ [0, 1], 
there can be exactly one generic Nash equilibrium strategy (y, p, q, λ) 
that yields full cooperation. These strategies are explicitly derived 
in Supplementary Sect. 4. In the following, we summarize the cor-
responding results.

For direct reciprocity (λ = 0), the unique strategy that yields sta-
ble cooperation is given by the classical GTFT strategy (Fig. 2a), 
with y = p = 1 and

q0 = 1− c
δb (1)

Here, δ is the probability that two interacting players interact 
again some time in the future. This pairwise continuation prob-
ability can be derived from the population-wide continuation  

probability d (Supplementary Sect. 4). For indirect reciprocity 
(λ = 1), the Nash equilibrium has y = p = 1 and

q1 = 1 −

1+ (n − 2)δ
1+ (n − 2)(1 − 2ϵ)

c
δ b (2)

In analogy to GTFT, we call this strategy generous scoring 
(GSCO, Fig. 2b). Both strategies have in common that they always 
assign a good reputation to cooperators, and that they occasionally 
assign a good reputation to defectors. However, they differ in which 
information they take into account when making these assessments. 
While GTFT only considers direct interactions, GSCO takes all 
interactions of a co-player into account.

The above descriptions of GTFT and GSCO only give rise to a 
sensible strategy if their q is non-negative. By requiring q ≥ 0, equa-
tions (1) and (2) thus characterize when cooperation can be sus-
tained at all. We find that the game’s continuation probability needs 
to be sufficiently large, δ ≥ δλ. The respective threshold values for 
direct (λ = 0) and indirect (λ = 1) reciprocity are

δ0 =

c
b and δ1 =

c
b+ (n − 2) ( (1 − 2ϵ)b − c ) (3)

The threshold δ0 for direct reciprocity is simply given by the 
cost-to-benefit ratio of cooperation3. The threshold δ1 for indirect 
reciprocity can be greater or lower, depending on whether or not 
outside information is sufficiently reliable (that is, depending on 
whether the probability ε of an observation error is greater or lower 
than (1 − c/b)/2). The two thresholds in equation (3) give rise to 
four possible cases (Fig. 2c): (i) cooperation is not feasible at all, (ii) 
it is only feasible through indirect reciprocity, (iii) it is only feasible 
through direct reciprocity or (iv) it is feasible through both kinds of 
reciprocity. We have derived analogous thresholds for δ under the 
alternative assumption that both direct and indirect observations 
are subject to the same error rate (Supplementary Sect. 6.1). In that 
case, the third region vanishes: if cooperation is feasible at all, it is 
always feasible through indirect reciprocity (Fig. 2d).

In addition to the extremal cases of direct reciprocity (λ = 0) 
and indirect reciprocity (λ = 1), we have also explored whether the 
equilibrium conditions for a cooperative equilibrium can be met 
more easily if players use intermediate values of λ. Interestingly, the 
answer is negative. Specifically, we prove that, if there is a coop-
erative Nash equilibrium for some 0 < λ < 1, then either GTFT or 
GSCO is already an equilibrium. From an equilibrium perspective, 
intermediate degrees of receptivity thus do not further extend the 
possibilities for cooperation. Moreover, in the limit of rare errors, 
we find that the conditions in equation (3) are strict even as we 
allow for arbitrarily complex strategies: if neither GTFT nor GSCO 
can sustain cooperation for the given parameters of the game, no 
other Nash equilibrium can.

Comparing the dynamics of direct and indirect reciprocity. The 
previous equilibrium results highlight different strategies that can 
maintain cooperation if adopted by sufficiently many in the popula-
tion. However, the above results do not imply that such strategies 
would automatically evolve. After all, the always defect (ALLD) 
strategy described by (0, 0, 0, λ) is also an equilibrium for all param-
eter values (Supplementary Sect. 4). In a next step, we thus explored 
under which conditions cooperation can emerge when players 
engage in social learning.

To this end, we no longer assume that players use equilibrium 
strategies. Rather, they may start out with some arbitrary strat-
egy (y, p, q, λ). Over time, players adopt new strategies based on 
a pairwise comparison process47,48. This process assumes that, in 
each time step, one individual is randomly drawn from the popu-
lation. This player then has the opportunity to revise her strategy.  
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She can do so by either adopting a randomly chosen strategy (akin 
to a mutation in biological models) or by imitating the strategy of 
another group member (akin to selection). Imitation events are 
biased such that strategies with a high payoff have a better chance 
of being imitated (Methods). This elementary strategy updating 
step is then iterated over many time periods. We use simulations 
to record which strategies the players adopt over time and how 
often they cooperate. To this end, we sometimes assume that 
mutations are rare. The limit of rare mutations is mathemati-
cally well understood49–53 and has been prominently employed in 
previous studies of reciprocity54–60 and beyond61–65. When muta-
tions are rare, the population consists of at most two strategies, 
residents and mutants. The mutant strategy goes extinct or fixes 
before the next mutation arises. The assumption of rare mutations 
allows simulations to be run more efficiently. This in turn makes 
it easier to explore the entire strategy space systematically (see 
Supplementary Sect. 5 for details). We complement the respective 
results with simulations with frequent mutations.

We first explore the two limiting cases of reciprocity separately, 
by fixing either λ = 0 or λ = 1. We consider two different scenarios 
(Fig. 3). In the first scenario, individuals interact for only a few 
rounds. In the other scenario, we consider the limiting case in 
which they interact for infinitely many rounds. This limit has been 
employed in many previous studies6–12 as it naturally reduces the 
dimension of the strategy space (Fig. 3a,b). Similar results can be 
obtained if the number of rounds is large but finite (Fig. 4). In all 
scenarios we observe that, for rare mutations, players either tend 
to adopt a strategy close to ALLD = (0, 0, 0, λ) or a conditionally 
cooperative strategy (1, 1, q, λ). As expected from our equilibrium 
analysis, indirect reciprocity is overall more favourable to coopera-
tion when individuals interact for only a few rounds. Interestingly, 
however, direct reciprocity is more effective in maintaining coop-
eration when many rounds are played, even in the absence of any 
observation errors.

To gain some analytical understanding for why direct reciprocity 
becomes superior, we consider an initial population that employs 
either ALLD or a conditionally cooperative strategy. For both resi-
dent strategies, we record how long it takes until a different strategy 
can invade (Fig. 3c,d) and which strategies are most likely to do so 
(Fig. 3e,f). When many games are played, conditional cooperators 
have a similar invasion time for both direct and indirect reciprocity 
(Fig. 3d). However, ALLD can be invaded more easily when play-
ers use direct reciprocity. To explore this differential robustness of 
defectors, we analysed the competition between ALLD and a condi-
tionally cooperative strategy (1, 1, q, λ). When only these two strate-
gies are present, the respective payoffs πD and πC can be calculated 
explicitly (Supplementary Sect. 5). In the limit of large populations 
and rare errors, the payoffs under direct reciprocity (λ = 0) become

π0
C = (b − c) × z− (1 − δ + δq)c × (1 − z)

π0
D = (1 − δ + δq)b × z

(4)

Here, z is the fraction of conditional cooperators in the popula-
tion. Equation (4) yields two insights. First, provided that q < 1 − c/
(δb), the dynamics is bistable. If cooperators are common (z ≈ 1), 
they have the higher payoff. In contrast, when cooperators are rare 
(z ≈ 0), defectors are favoured. Second, the payoff of the two strate-
gies increases linearly in the fraction of cooperators. When we per-
form the same analysis for indirect reciprocity (λ = 1), we obtain

π1
C =

q+q(1 − q)(1 − z)
1−(1−q)z × z(b− c)− q(1 − z)c

π1
D = qb × z

(5)

Again, for q sufficiently small, these payoffs result in a bistable 
competition. However, while the defectors’ payoffs continue to 
increase linearly in the fraction of cooperators, the cooperators’ 
payoffs are now non-linear (Fig. 3g,h).

0

0.5

1.0
Pr

ob
ab

ilit
y 

va
lu

e

0

0.5

1.0

Pr
ob

ab
ilit

y 
va

lu
e

y p q

Direct reciprocity
GTFT

a

Indirect reciprocity
GSCO

b

Few
rounds

Few
errors

Many
errors

c

No cooperative
Nash equilibrium

Only
indirect reciprocity

Only
direct reciprocity

Direct and
indirect reciprocity

0 0.2 0.4 0.6 0.8 1.0
0

0.1

0.2

0.3

0.4

Er
ro

r r
at

e

Errors only affect
indirect observations

Pairwise
continuation probability

Few
rounds

Many
rounds

Many
rounds

d

No cooperative
Nash equilibrium

Only
indirect

reciprocity Direct and
indirect

reciprocity

0 0.2 0.4 0.6 0.8 1.0
0

0.1

0.2

0.3

0.4

Er
ro

r r
at

e

Errors affect both
direct and indirect observations equally

Pairwise
continuation probability

λ

y p q λ

δ0

δ1

δ0

δ1

Fig. 2 | An equilibrium analysis reveals when direct or indirect reciprocity can sustain cooperation. a,b, Within the reactive strategies, there is one 
cooperative Nash equilibrium for direct reciprocity (GTFT, a) and one such equilibrium for indirect reciprocity (GSCO, b). Both strategies have in common 
that they always cooperate in the first round or if the co-player has cooperated in the last relevant interaction (y = p = 1). They differ in how they react 
to a co-player’s defection, as described by equations (1) and (2), and in whether they take into account indirect information. c, Depending on the 
parameters of the game, there are up to four scenarios: (i) when there are few rounds and many perception errors, cooperation is infeasible; (ii) when 
there are an intermediate number of rounds and few perception errors, cooperation can be sustained by indirect but not by direct reciprocity; (iii) when 
there are many rounds and many perception errors, cooperation can be sustained by direct but not by indirect reciprocity; (iv) when there are many 
rounds and few errors, both direct and indirect reciprocity support cooperation. d, When direct and indirect observations are subject to the same error 
rate, there is no region in which direct reciprocity can sustain cooperation but indirect reciprocity cannot. The figure shows the case of n = 50, b = 1.8 
and c = 1. In c, the white lines depict the continuation probabilities δ0 and δ1 given by equation (3). In d, they are given by δ0 = c/ ( (1 − 2ϵ)b ) and 
δ1 = c/ ( (n − 1)(1 − 2ϵ)b − (n − 2)c ), where ε is now the joint error probability for both direct and indirect observations.

Nature Human Behaviour | www.nature.com/nathumbehav

http://www.nature.com/nathumbehav


ArticlesNAtUrE HUmAn BEhAvIOUr

This analysis highlights two crucial effects that distinguish 
indirect from direct reciprocity. On the one hand, indirect reci-
procity leads to a faster spread of information throughout a popu-
lation. As a consequence, indirect reciprocity is more effective in 
restricting the payoff of a defector (that is, π1

D < π0
D for all z > 0). 

On the other hand, successful cooperation in indirect reciprocity 
is based on non-linear synergy effects. Cooperators only obtain 
high payoffs when they are sufficiently common. Which of the 
two effects is dominant depends on the population size, the error 
rate and how often players interact on average (Extended Data 
Fig. 2). Once players interact for many rounds, indirect reciproc-
ity ceases to have any advantage (because π1

D = π0
D for δ → 1). In 

that case, defectors are always more readily invaded under direct 
reciprocity.

Due to their non-linear returns, cooperative strategies of indirect 
reciprocity are most effective when they are common. This observa-
tion suggests that indirect reciprocity may be less likely to evolve 
when the evolutionary process itself prevents cooperative strategies 
to form a large majority. Such a case can occur, for example, when 
mutations are abundant, such that many different strategies are 
routinely present in the population. To explore this issue in more 
detail, we systematically varied the mutation rate of the evolution-
ary process (Fig. 4). Indeed, while mutations only have a minor 
effect on direct reciprocity, the impact on indirect reciprocity can 
be substantial as mutation rates become large. In particular, around 
μn = 1 (that is, once there is more than one mutation per genera-
tion), cooperation rates decline quickly. Further simulations suggest 
that this downfall of cooperation is due to both a reduced stability 
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Fig. 3 | Evolutionary dynamics of direct and indirect reciprocity. We use individual-based simulations to explore the dynamics when all players engage 
in either direct (blue) or indirect reciprocity (green). We consider two scenarios: individuals either engage in only a few games (top) or in infinitely many 
games (bottom). a,b, Over the course of evolution, populations cluster in two regions of the strategy space. Populations are either in the vicinity of ALLD 
(where y ≈ p ≈ q ≈ 0) or in the vicinity of conditionally cooperative strategies (where p ≈ 1). Percentages represent the fraction of time spent in each of 
these two neighbourhoods. Dots represent the 500 most long-lived resident strategies. As the impact of the first round is negligible for δ = 1, the state 
space degenerates to a square instead of a cube. c,d, The number of mutants it takes to invade a population of defectors or conditional cooperators. A 
larger number of rounds undermines the stability of ALLD but enhances the stability of the cooperators. e,f, We recorded which mutant strategies invade 
these two resident strategies. On average, defectors are invaded by conditionally cooperative strategies with p ≫ q. g,h, Under direct reciprocity, the 
payoff of a discriminating mutant (TFT) in an ALLD population increases linearly in the number of mutants. Under indirect reciprocity, the payoff of a 
discriminating mutant (SCO) is non-linear. As baseline parameters in our evolutionary simulations, we use n = 50 and b/c = 5. For the exact setup of these 
simulations, see Methods.
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of conditionally cooperative strategies and an enhanced stability of 
populations with a majority of defectors (Fig. 4g–i). These results 
highlight an important difference between direct and indirect reci-
procity. While reactive strategies of direct reciprocity are largely 
robust to mutations, the corresponding strategies of indirect reci-
procity are more sensitive. Strategies such as generous scoring are 
most powerful in environments with little noise. To spread, they 
need not only the outside information (small ε) but also the evolu-
tionary process (small μ) to be faithful.

Co-evolution of direct and indirect reciprocity. The above find-
ings raise the question of whether the players themselves are able 
to learn when to use indirect information. To explore this issue, 
we first considered a simplified setup in which players can freely 
choose between all strategies (y, p, q, λ) where either λ = 0 and 
λ = 1. That is, players can choose whether they only take direct 
interactions into account or whether they take all of a co-player’s  

interactions equally into account. We study three different scenarios 
in the limit of rare mutations: one with noisy information and few 
interactions (Fig. 5a), one with reliable information and interme-
diately many interactions (Fig. 5b) and one with noisy information 
and many interactions (Fig. 5c). The results confirm our analyti-
cal findings above. While defectors are predominant in the first 
scenario, individuals adopt conditionally cooperative strategies in 
the second and third scenario, showing a bias towards indirect and 
direct reciprocity, respectively. In a next step, we systematically var-
ied how often individuals interact with each other and how noisy 
third-party information is (Fig. 5d). Again, we find that indirect 
reciprocity is most abundant when there are intermediately many 
rounds, such that cooperation cannot evolve through direct reci-
procity alone.

We repeated all the simulations for an evolutionary process with 
more frequent mutations (Fig. 5e–h). While the qualitative results are 
similar, we recover our previous observation that larger mutations  
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Fig. 4 | Impact of mutations on either direct or indirect reciprocity. We ran additional simulations to explore how larger mutation rates affect the results 
in Fig. 3. We consider the same two scenarios with few games (top) and infinitely many games (bottom), and an additional scenario in which the number 
of games is large but finite (middle). a–c, Simulations for a particular positive mutation rate (coloured) in comparison with the limit of rare mutations 
(grey). The bar diagrams depict how often players use strategies (y, p, q, λ) for either direct or indirect reciprocity. Similarly to Fig. 3, players are clustered 
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rates disfavour indirect reciprocity. Even in those parameter regions 
in which individuals learn to incorporate third-party information, 
evolving cooperation rates tend to be lower than in the scenario 
with rare mutations (Fig. 5f). The effect of other game parameters 
on the evolution of cooperation is discussed in Supplementary  
Sect. 5, and visualised in Extended Data Figs. 3 and 4.

Finally, we also explored which strategies evolve when play-
ers can adopt intermediate values of λ (Extended Data Fig. 5). To 
allow for a fair comparison between direct and indirect reciproc-
ity, mutant strategies are drawn such that an average mutant would 
resort to their direct experience in approximately half of the cases 
(for details, see Supplementary Sect. 5.4). Overall, we observe a sim-
ilar trend as before: When information is noisy and there are very 
few rounds, individuals learn not to cooperate (Extended Data Fig. 
5e); when there is little noise and intermediately many interactions, 
individuals learn to cooperate predominantly based on indirect 
information (Extended Data Fig. 5f); and when there is an inter-
mediate amount of noise and many interactions, individuals tend 
to cooperate based on direct information (Extended Data Fig. 5g).

Discussion
When deciding whether to cooperate, humans often resort to the 
co-player’s reputation arising from third-party interactions28,29, 

sometimes even if the two players have a joint history of direct inter-
actions30. Most theoretical studies, however, do not investigate how 
subjects choose between these two sources of information. They 
study either direct reciprocity using repeated games5–18 or indirect 
reciprocity using donor-recipient games20–23. Here, we propose a 
general framework that unifies direct and indirect reciprocity.

To make such a comparison between different kinds of reciproc-
ity most transparent, throughout the main text we have focused 
on a comparably simple setup. For example, we have not modelled 
explicitly how information from third-party interactions spreads 
throughout a population. We have assumed that individuals observe 
each others’ interactions directly. Instead, one may equally assume 
that individuals use rumours and gossip to exchange information 
about their past experiences with other population members. Such 
communication can add another layer of complexity to the model 
because players may have an incentive to strategically misrepresent 
their reputation. For example, defectors are naturally incentivized to 
prevent others from faithfully learning about their past behaviours. 
As demonstrated in previous work37,38, such miscommunication 
does not render cooperation impossible. However, it imposes addi-
tional bounds on when indirect reciprocity can evolve. While our 
model does not consider the effects of false gossip explicitly, we may 
capture some of its workings by assuming that observation errors 
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Fig. 5 | Co-evolution of conditional cooperation and information use. To explore when individuals themselves learn to use indirect information, we ran 
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limit of rare mutations. The scenarios differ in how often subjects interact on average and how noisy indirect information is. When there are only a few 
interactions and considerable noise, cooperation does not evolve at all (a). In the other two scenarios, cooperation evolves due to either indirect (b) or 
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which individuals take into account indirect information is substantially diminished. For the exact setup of these simulations, see Methods.
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may be biased. For example, acts of defection may be more likely to 
be misperceived than acts of cooperation. In Supplementary Sect. 
6, we show that all our analytical results naturally carry over to this 
more realistic setting.

Similarly, while we have explored the effect of observation 
errors in detail, we neglected other types of errors. As an example, 
implementation errors have received considerable attention in the 
previous literature66. Such errors lead players to mis-execute their 
intended actions. These players may fail to cooperate although 
they planned to do so, perhaps because of a ‘trembling hand’67. 
The consequences of implementation errors can be rather different 
from observation errors, because only the former become publicly 
known. Nevertheless, we show in Supplementary Sect. 6 that such 
implementation errors can be included naturally into our frame-
work (see also Extended Data Fig. 6).

Finally, in the main text, we restrict ourselves to the simplest 
class of strategies, which only depend on a player’s previous action. 
Within this class, we identified a remarkable strategy of indirect rec-
iprocity. This strategy, called generous scoring (GSCO), is the ana-
logue of generous tit-for-tat (GTFT)6. It routinely cooperates with 
other cooperators, but it is also willing to forgive a defector occa-
sionally. Unlike GTFT, however, GSCO does not require repeated 
interactions between two players; it can sustain cooperation even if 
individuals are likely to never meet again. When previous research 
on indirect reciprocity identified stable cooperative strategies, 
the strategies are only shown to be stable within a given strategy 
class22,23. This kind of analysis does not rule out that the respective 
equilibria turn out to be unstable once more complex mutant strate-
gies are permitted. In contrast, generous scoring is a Nash equilib-
rium with respect to all possible mutant strategies, independent of 
whether mutants themselves use direct or indirect reciprocity, or 
how much information they are able to process.

This stability of generous scoring may be surprising. After all, 
first-order strategies have been suspected of being incapable of 
sustaining cooperation21–23. For example, image scoring is unstable 
because players have no incentive to retaliate against defectors in 
the first place21. By defecting, they would only harm their own repu-
tation, which puts them at risk to receive less cooperation in the 
future. Generous scoring circumvents this risk by punishing defec-
tors stochastically, with a well-defined probability. This probability 
is chosen such that the expected long-term loss in reputation exactly 
matches the short-run gains from saving the cooperation costs. We 
note that this does not require the players to know all relevant game 
parameters in advance, or to explicitly calculate the respective prob-
abilities. Instead, our simulations suggest that individuals may well 
be able to learn such strategies through elementary exploration and 
imitation processes.

Our results also suggest that direct and indirect reciprocity 
require different environments to emerge. Generous tit-for-tat 
requires players to interact sufficiently often, whereas generous 
scoring can also sustain cooperation when players only interact 
occasionally. However, for generous scoring to evolve, mutation 
rates need to be smaller than under direct reciprocity, and outside 
information needs to be sufficiently reliable (Figs. 3–5). While our 
results in the main text focus on simple first-order strategies, our 
general framework is equally applicable to more elaborate norms 
of indirect reciprocity. In particular, in Supplementary Sect. 6, we 
explore how our framework can be adapted to study strategies rep-
resented by finite-state automata with more than two states18 or the 
leading eight22 (see also Extended Data Figs. 7–10).

We explored how to make decisions when different sources of 
information are available. When individuals interact regularly, we 
find that they rely on direct information. They trust their own 
experiences more than indirect information, which may be subject 
to noise. In contrast, when relationships are short-lived or super-
ficial, cooperation can only be sustained when people act upon  

public reputations. Previous work suggests that indirect reciprocity 
requires social norms that are sufficiently complex21–23. These norms 
make use of an unlimited regress: when assigning a new reputation 
to a person, observers need to take into account the reputation of 
the person’s co-player, which in turn depends on the reputation of 
the co-player’s previous interaction partner. Our model proposes 
a different view. To sustain cooperation, simple probabilistic rules 
based on a minimum of information can suffice.

Methods
In the following, we provide a more technical summary of our framework. We 
explain how it can be used to (i) derive the players’ payoffs, (ii) characterize all Nash 
equilibria among reactive strategies and (iii) study the co-evolution of direct and 
indirect reciprocity. For all details and proofs, we refer to Supplementary Sects. 2–5.

General framework. For the baseline model considered throughout the main 
text, we consider a game in a well-mixed population with n individuals. In each 
round, two individuals are randomly drawn to interact in one round of a prisoner’s 
dilemma. They can either cooperate (C) or defect (D). Cooperation means paying 
a cost c > 0 to provide a benefit b > c to the co-player. Defection means paying no 
cost, and for the co-player to gain no benefit. Both players decide independently. 
Their actions are observed by all population members. However, we assume that 
indirect information is subject to perception errors: those members who only 
indirectly witness the interaction may misinterpret each player’s action with 
probability ε. That is, with probability ε, outside observers take a C for a D, or 
vice versa. After the two interacting individuals have made their decisions, with 
probability d, there is another round. In that case, again two individuals are chosen 
at random from the population to interact in a prisoner’s dilemma. Otherwise, with 
probability 1 − d, the game is over. The players’ payoffs for the population game are 
defined as their average payoff over all rounds in which they participated.

Each individual represents every other population member by a separate 
finite-state automaton. Each automaton can be in one of two possible states: good 
(G) or bad (B). The current state of the automaton depends on the individual’s 
strategy, on the co-player’s past actions and on whether an error has occurred. 
In the main text, strategies are 4-tuples (y, p, q, λ) ∈ [0, 1]. The first entry y is the 
initial probability for the automaton to be in the good state. The second entry p 
and the third entry q are the conditional probabilities that the automaton is in 
the good state, given that the respective co-player just cooperated (defected) in 
a direct interaction, respectively. Finally, the value of λ is the probability that a 
player’s indirect interactions with third parties are taken into account to update the 
automaton accordingly. For λ = 0, third-party interactions are completely ignored, 
and the automaton’s state only depends on direct interactions. For λ = 1, every 
interaction of the respective co-player is equally taken into account, no matter 
whether or not the focal individual is directly involved. Individuals cooperate 
with those co-players they consider good and defect against those co-players they 
consider bad.

We refer to the case of λ = 0 as direct reciprocity, and to λ = 1 as indirect 
reciprocity. We note that, in exceptional cases, even a player with λ = 1 may base 
her decisions on direct experience. This happens, for example, when the same two 
players are chosen to interact in two consecutive rounds. In that case, the players’ 
second-round behaviour will depend on their direct experience in the first round. 
In Supplementary Sect. 6.2, we contrast this model with an alternative specification 
in which players who use indirect reciprocity ignore all direct information entirely. 
With minor modifications, all results presented herein carry over (see also 
Supplementary Fig. 2).

Derivation of a unified payoff equation. For our baseline framework, the players’ 
payoffs can be calculated explicitly, without having to simulate the game. To 
derive the respective payoff equation, let each player i adopt some arbitrary but 
fixed strategy (yi, pi, qi, λi). Let w̄ = 2/n denote the probability that a particular 
player is chosen to interact in the next round of the prisoner’s dilemma. Similarly, 
w = 2/ ( n(n − 1) ) is the probability that a particular pair of players is chosen. 
Finally, we denote by xij(t) the probability that player i considers player j to be good 
after t games have been played in the population. Given the value of xij(t), we can 
recursively compute xij(t + 1) as

xij(t + 1) = (1 − w̄) xij(t)

+w ( xji(t) pi + (1 − xji(t)) qi )

+(w̄ − w) (1 − λi) xij(t)

+wλi
∑

l̸=i,j
( ( 1 − ϵ ) xjl(t) + ϵ ( 1 − xjl(t) ) ) pi

+( ( 1 − ϵ ) ( 1 − xjl(t) ) + ϵxjl(t) ) qi

(6)

The summands on the right-hand side reflect the following four possible events 
(illustrated in Extended Data Fig. 1e–h):
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	(i)	 The first line on the right-hand side corresponds to the case that player j does 
not interact at time t. This happens with probability 1 − w̄. In this case, i’s 
automaton with respect to j does not change.

	(ii)	 The second line corresponds to the case that i directly interacts with j at time 
t. This happens with probability w. In this case, we assume that players always 
get a chance to update the co-player’s reputation. The updated reputation state 
depends on the values of pi and qi, and on j’s actions. Player j’s action is C with 
probability xji(t) and D with probability 1 − xji(t).

	(iii)	 The third line corresponds to the case that j interacts with some third party, 
which happens with cumulative probability (w̄ − w), but player i decides 
not to react to this indirect information, with probability (1 − λi). In this case, 
i’s automaton with respect to j does not change.

	(iv)	 The last two lines represent the case that j interacts with some third party l, 
which has probability w each, and i updates her automaton with respect to j 
accordingly. In this case, player i’s updated state depends on whether or not j 
cooperates, whether or not there is a perception error and on the values of pi 
and qi. We sum over all possible interactions of player j with third parties.

Given this recursion, we can calculate the value of xij(t) for all future times t 
based on the initial condition xij(0) = yi. This allows us to compute the weighted 
average xij := (1 − d)

∑
∞
t=0 d

t
× xij(t). This average corresponds to the 

probability of finding player i’s automaton in the good state in a randomly picked 
round. Its value can be computed explicitly, by representing equation (6) in matrix 
notation (Supplementary Sect. 3). Based on the values of xij, player i’s expected 
payoff becomes

πi =
1

n − 1
∑

j̸=i
(xji b − xij c) (7)

This equation allows the explicit calculation of payoffs for arbitrary population 
compositions. Its results are in agreement with the payoffs that one obtains when 
simulating the game dynamics explicitly (Supplementary Fig. 1).

Equilibrium analysis. Based on the payoff equation (7), we can explicitly 
characterize the generic Nash equilibria of our model (that is, those Nash equilibria 
that are robust with respect to small parameter changes). To this end, it is useful to 
introduce the variable δ, which is the pairwise continuation probability (that is, the 
probability that two players interact again, given that they just had an interaction). 
This probability can be calculated explicitly. It depends on the population-wide 
continuation probability d and on the population size n, and it is given  
by δ = 2d/ ( 2d + (n − 1)n(1 − d) ). For a derivation, see  
Supplementary Sect. 4.

By extending the theory of zero-determinant strategies8–16, we prove that a 
reactive strategy (y, p, q, λ) is a generic Nash equilibrium for 0 < δ < 1 if it is either 
ALLD = (0, 0, 0, λ), or if p − q = r∗λ  with

r∗λ :=
1 + (n − 2)δλ

1 + (n − 2)(1 − 2ϵ)λ
·

c
δb (8)

In Fig. 3a,b, the set of all strategies that satisfy p − q = r∗λ  is depicted by a 
coloured face and a coloured dashed line, respectively. If the entire population 
adopts one of these Nash equilibrium strategies, no single player can gain a higher 
payoff by deviating.

We call a generic Nash equilibrium ‘cooperative’, if it has the additional 
property that all players are fully cooperative in the limit of rare errors. Due to this 
latter property, the strategy must satisfy

y = p = 1 (9)

That is, the strategy must always assign a good reputation to unknown players, 
and to players who cooperated in the latest relevant interaction. Combining 
equations (8) and (9) shows that, within the space of reactive strategies, there is 
exactly one cooperative Nash equilibrium of direct reciprocity (λ = 0). This strategy 
is GTFT, as defined in equation (1). Similarly, there is exactly one cooperative 
Nash equilibrium of indirect reciprocity (λ = 1), the strategy GSCO, defined 
by equation (2). In addition to these distinguished boundary cases, we can use 
equations (8) and (9) to construct infinitely many cooperative Nash equilibria, one 
for every value of λ ∈ [0, 1]. We refer to the class of all these strategies as ‘generous 
reciprocators’. For all respective details, see Supplementary Sect. 4.

Evolutionary analysis. We model the evolutionary spread of strategies in the 
population by a pairwise comparison process47,48. Initially, players adopt an 
arbitrary strategy (y, p, q, λ). Then, one player is randomly chosen from the 
population to update her strategy. There are two distinct mechanisms for how this 
updating can occur.

	(i)	 With probability μ, there is a mutation event. In that case, the focal 
player abandons her old strategy and instead switches to a new strategy 
( y′, p′, q′, λ′). The first three entries, y′, p′, q′, are uniformly and indepen-
dently drawn from the unit interval [0, 1]. For simplicity, we assume in most 
figures that the last entry λ′ is either predetermined (for those simulations in 

which players are restricted to either direct or indirect reciprocity), or that it 
is randomly taken from the set {0, 1}. 
In addition, in Extended Data Fig. 5, we explore how evolution operates when 
players can also adopt strategies with intermediate λ. For these simulations, 
we first compute how likely it is for a given strategy (y, p, q, λ) that a player’s 
state with respect to a given co-player is updated between two consecutive 
games of the two players. The respective probability γ can be calculated as 
(Supplementary Sect. 5.4)

γ =
(n − 2)λ

1 + (n − 2)λ
(10)

 
As one may expect, λ = 0 implies that γ = 0. That is, a player who ignores 
all third-party information only updates the co-player’s state in a direct 
encounter and never in between. Similarly, λ = 1 implies that γ = (n − 2)/
(n − 1). That is, a player who takes all information into account has an (n − 2)/
(n − 1) chance of updating the co-player’s state before the two players interact 
again (the only exception being when the co-player engages in no third-party 
interaction in between, which happens with probability 1/(n − 1)). For the 
simulations shown in Extended Data Fig. 5, we randomly draw mutant strate-
gies ( y′, p′, q′, λ′) such that the respective γ′ according to equation  
(10) is uniformly distributed in [0, (n − 2)/(n − 1)]. In this way, we ensure that 
a randomly drawn mutant is approximately equally likely to base her  
decisions on direct and on third-party information, respectively. 
We note that, alternatively, one could also consider a mutation scheme where 
λ itself is uniformly drawn from the unit interval [0, 1]. We do not employ 
this alternative mutation scheme here because the resulting mutant strate-
gies would rarely engage in direct reciprocity. Intuitively, players in large 
populations have many more third-party interactions than they have direct 
interactions. As a result, even for a comparably small value of λ, the resulting 
γ according to equation (10) is typically close to 1 (especially if the population 
size n is large). For uniform λ, players would thus rarely act based on their 
direct experience with the respective co-player. For further details,  
see Supplementary Sect. 5.4.

	(ii)	 With probability 1 − μ, there is an imitation event. In that case, the focal 
player randomly chooses another player from the population as a potential 
role model. If the focal player’s payoff according to equation (7) is given by 
πF and the role model’s payoff is πR, the focal player adopts the role model’s 
strategy with probability

ρ =
1

1 + exp [ − β(πR − πF) ]
. (11)

 
The parameter β ≥ 0 measures the strength of selection. For small values of β, 
the imitation probability is roughly 1/2, independent of the strategies of the 
involved players. As the value of β increases, the more likely it becomes that 
the focal player only adopts those strategies that yield a higher payoff.

For positive values of μ and finite values of β, the two mechanisms of 
mutation and imitation give rise to an ergodic stochastic process in the space of 
all population compositions. To explore the evolutionary dynamics, we simulated 
this process for a large number of updating events. We record which strategies 
the players adopt over time, and how often they cooperate. Because the process is 
ergodic, the time averages of these quantities converge, and they are independent 
of the initial population68.

Specific methods employed for the figures.  Figure 3a,b depicts simulation 
results of the evolutionary process when all players are required to use either direct 
(λ = 0) or indirect reciprocity (λ = 1). We simulated the process for 2 × 107 mutant 
strategies. For Fig. 3c–f, we looked at simulations where the initial population 
employs either a noisy variant of ALLD, (0.01, 0.01, 0.01, λ) or a conditionally 
cooperative strategy, CC = (0.99, 0.99, 0.5, λ). We then recorded how long it takes 
on average until a mutant strategy reaches fixation, and which mutant strategy 
succeeds. Each bar depicts an average over 103 simulations. Figure 3g,h depicts the 
players’ payoffs when the population consists of a mixture of defectors and noisy 
discriminators (TFT in the case of direct reciprocity, SCO in the case with indirect 
reciprocity, with p = 0.99, q = 0.01). As parameters for this figure, we use n = 50, 
b = 5, c = 1, ε = 0 and β = 10, while the limit of rare mutations μ → 0.

 Figure 4 explores how different mutation rates affect the results of Fig. 3. As 
in Fig. 3, all players are restricted to use either direct (λ = 0) or indirect reciprocity 
(λ = 1). For Fig. 4a–f, we then simulated the evolutionary process for different 
continuation probabilities. Figure 4a–c depicts which strategies the players use over 
time, for either the limit μ → 0 (grey bars) or a mutation rate of μ = 0.01 (coloured 
bars). The upper panels of Fig. 4d,e depict how much players cooperate on average, 
for different values of μ. The lower panels show how many different strategies are 
simultaneously present in a population on average. This number ranges from 1 
in the limit of rare mutations to n = 50 when mutations are abundant. Figure 4g–i 
considers populations that are initialized either with the same noisy variant of 
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ALLD as considered in Fig. 3 or with the same conditionally cooperative strategy. 
Again, we record how long it takes on average until the respective strategy has 
been removed from the population by the evolutionary process. Each data point 
represents an average of 50 independent simulations. Time is scaled such that 
units correspond to the number of introduced mutant strategies. For μ → 0, 
these extinction times converge to the values in Fig. 3c,d. For μ → 1, extinction 
times converge to a value that is the same for both strategies and all continuation 
probabilities. Unless noted otherwise, the parameters are the same as in Fig. 3.

 Figure 5 shows evolutionary results for the case that, in addition to the y, p, q 
values, players are also free to choose λ ∈ {0, 1}. We consider two sets of simulations, 
for either the case of rare mutations (μ → 0) or a positive mutation rate (μ = 0.02). 
Figure 5a–g depicts average trajectories for three specific scenarios. The scenarios 
differ in the game’s continuation probability and the error rate. The specific 
parameters we use are δ = 0.3, ε = 0.1 (Fig. 5a,e), δ = 0.9, ε = 0.001 (Fig. 5b,f) and 
δ = 0.999, ε = 0.01 (Fig. 5c,g). The time trajectories represent an average over 1,000 
simulations. In the initial population, all players employ ALLD = (0, 0, 0, λ) with 
randomly chosen λ ∈ {0, 1}. Time is scaled such that units correspond to the number 
of mutant strategies introduced since the beginning of the simulation. In Fig. 5d,h, 
we systematically vary the continuation probability and the error rate of the game. 
Each data point corresponds to the time average of a single simulation with 107 time 
steps. Unless noted otherwise, the parameters are the same as in Fig. 3.

Extended Data Fig. 3 explores how the results for the three scenarios 
considered in Fig. 5 change as we vary four model parameters. The upper half of 
the figure considers the same basic setup as in Fig. 5: the population is initialized 
such that every player uses ALLD. We then simulate the process for a sufficient 
time (at least until 107 mutant strategies have been introduced). This time is chosen 
such that the average cooperation rate and the average proportion of indirect 
reciprocity equilibrate, and that these quantities are independent of the chosen 
initial population. In the lower half, we consider an alternative simulation scheme 
in which we take the average over 200 simulations with randomly chosen initial 
populations. Each simulation is only run for 105 time steps (mutant strategies 
introduced). The evolutionary parameters that we vary are the benefit-to-cost ratio 
b/c (between 1 and 12), the population size n (between 2 and 1,024), the selection 
strength β (between 0.01 and 100) and the mutation rate μ (between 0.0001 and 1). 
As the baseline parameters, we use the same values as in Fig. 5a–c.

Extended Data Fig. 4 investigates in more detail the non-monotonicity of 
evolving cooperation rates in Extended Data Fig. 3e. To this end, we again consider 
the scenario with intermediately many interactions and reliable information 
(δ = 0.9, ε = 0.001, orange curve in Extended Data Fig. 3e). Extended Data Fig. 4a,b 
explores how many mutant strategies it takes on average to invade two different 
resident strategies. Because the non-monotonicity arises in a scenario that favours 
the evolution of indirect reciprocity, we consider two residents with λ = 1. The 
defector resident is given by (0.001, 0.001, 0.001, 1), whereas the cooperative 
resident adopts the strategy (0.999, 0.999, 0.650, 1). We ran 1,000 simulations for 
different values of the selection strength parameter (10−3 ≤ β ≤ 102). Dots represent 
outcomes of individual simulations, whereas the red and blue curve represent 
average values. For Extended Data Fig. 4c–e, we ran the same evolutionary process 
as in Extended Data Fig. 3e for the scenario with intermediately many interactions 
and reliable information. For three different intensities of selection, we recorded the 
distribution of cooperation rates over a simulation with 2 × 107 time steps. Time 
steps are measured in the number of mutant strategies introduced by the process.

In Extended Data Fig. 5, we repeat the simulations in Figs. 3–5, but now 
allowing for intermediate values of λ. In Extended Data Fig. 5a–d, we consider the 
case of a fixed λ value. To this end, we use five different values of λ, which according 
to equation (10) map to the values of γ ∈ {0, 1/4, 1/2, 3/4, γmax}, with γmax = (n − 2)/
(n − 1). For Extended Data Fig. 5a,b, we consider the same setup as in Fig. 3a,b and 
use the same parameter values. For Extended Data Fig. 5c,d, we use the same setup 
and the same parameters as in Fig. 4d,f. Finally, for Extended Data Fig. 5e–h, we 
use the same parameters and the same general setup as in Fig. 5a–d. However, while 
in Fig. 5a–d players are restricted to strategies with either λ = 0 or λ = 1, here they 
can adopt arbitrary strategies with 0 < λ < 1. The bottom panels of Extended Data 
Fig. 5e–g show how often residents adopt different values of γ by the end of each 
simulation (for 1,000 simulations in total). For details on how the respective mutant 
strategies are generated, see Methods and Supplementary Sect. 5.4.

For Extended Data Fig. 6, we re-ran the simulations in Fig. 5d for different 
noise scenarios. Except for the changes explicitly mentioned (by changing the 
error scenario or the information available to the players), the simulations were 
performed exactly as for Fig. 5d.

Extended Data Fig. 7 explores the stability of three different finite-state 
automata against a single ALLD or always cooperate (ALLC) mutant. Because there 
is no efficient payoff formula that computes the payoffs of arbitrary automata in the 
context of indirect reciprocity with noisy observations, we computed the payoffs by 
simulations. To this end, we assumed that all automata are initialized in the good 
state. Then, players engage in 2 × 106 pairwise interactions. To compute the players’ 
average payoffs, we take the mean over all their payoffs in the second half of the 
simulation, as in previous work33. Taking the average over all rounds would not 
alter our conclusions. As game parameters, we use n = 50, b = 5, c = 1 and ε = 0.05.

For Extended Data Fig. 8, we first simulated the players’ payoffs for all possible 
population compositions (kA, kC, kD), where kA is the number of players who adopt 

the respective automaton strategy, kC is the number of unconditional cooperators and 
kD is the number of defectors. For these payoff calculations, we employed the same 
process as in Extended Data Fig. 7. For pre-computed payoffs, the fixation probability 
of a given mutant strategy into any other resident strategy can be computed 
explicitly69. Based on all pairwise fixation probabilities, one can then compute how 
often each strategy is played on average49. This yields Extended Data Fig. 8a–c. 
For positive mutation rates, the abundance of each strategy can still be computed 
explicitly, by formulating the evolutionary process as a Markov chain. The states of 
this Markov chain are all possible population compositions (kA, kC, kD). When n = 50, 
there are 1,326 such states. Thus, the dynamics can be described by a 1,326 × 1,326 
transition matrix. The entries of this transition matrix describe the probability with 
which the population moves from state (kA, kC, kD) to state (k′A, k′C, k′D) after one 
evolutionary updating event (see, for example, Supplementary Sect 6.2 in ref. 33). The 
invariant distribution of this Markov chain can be computed directly. It describes 
how often each state is visited by the evolutionary process, as illustrated in Extended 
Data Fig. 8d–f. Based on this invariant distribution, we can also calculate how often 
players cooperate on average, as shown in Extended Data Fig. 8g–i.

Extended Data Figs. 9 and 10 use exactly the same method as Extended Data 
Figs. 7 and 8, respectively. As the only difference, the finite-state automata are 
replaced by leading-eight strategies.

Supplementary Fig. 1 considers a population consisting of 49 conditional 
cooperators and a single defector. The cooperators employ the strategy 
(1, 1, 0.01, λ), whereas the remaining defector applies the strategy (0, 0, 0, λ). We use 
two independent approaches to compute the players’ payoffs, the payoff equation 
(7), and explicit simulations of the game dynamics (we averaged over 105 iterations 
per parameter combination). The parameters are ε = 0.001, δ = 0.9 (a) and ε = 0.45, 
δ = 0.999 (b). The respective Python scripts used to run the simulations and for 
solving equation (7) are provided online.

Finally, for Supplementary Fig. 2, we repeat the simulations done in Fig. 5a–d, 
but now using the alternative strategy set (y, p, q, κ) described in Supplementary 
Sect. 6.2. Here, players who employ indirect reciprocity ignore all direct 
information they may have. The game parameters are the same as in Fig. 5a–d.

Reporting summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The raw data generated for the main text, which was used to create Figs. 3–5, are 
available at https://osf.io/brnvx/?view_only=4adc0b791a3640df88c94362d0f1
64e6!. The raw data for the Extended Data Figures is available from the authors 
upon request.

Code availability
All simulations and numerical calculations were performed with MATLAB 
R2014A and Python 2.7. The Python scripts used to simulate the game dynamics, 
numerically calculate the players’ expected payoffs and simulate the evolutionary 
process are available online at https://osf.io/brnvx/?view_only=4adc0b791a3640df
88c94362d0f164e6!.
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Extended Data Fig. 1 | Schematic representation of the model. a, We consider a population of size n. To illustrate the basic workings of our model, we 
focus on three arbitrary players that are fully interchangeable in all their abilities. b, Each player has a separate finite-state automaton with two possible 
states G and B for each co-player. The current state is marked in bold. In this example, player 1 considers player 2 as good and player 3 as bad. c, In each 
round, two players are chosen at random to interact in a prisoner’s dilemma. Players cooperate if they consider their co-player to be good and they defect 
otherwise. The other population members do not participate in the game, but they observe its outcome at no cost to themselves. d, After the interaction, 
both active players update their respective automata, depending on their strategy and on the co-player’s action. In addition, each observer independently 
updates her automata with respect to players 1 and 2 with probability λ each. e–h, We can mathematically describe how player i’s automaton with 
respect to player j changes over time by distinguishing four possible events. First, player j is not chosen to interact, such that player i’s automaton remains 
unaffected (e); second, players i and j interact with each other and update their respective states accordingly (f); third, player j interacts with someone 
else, but player i does not take this interaction into account (g); fourth, player j interacts with someone else, and player i updates j’s state accordingly (h).
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Extended Data Fig. 2 | Competition between conditional cooperators and defectors. We compare the performance of conditional cooperators with 
strategy (1, 1, 1/3, λ) in a population of defectors, (0, 0, 0, λ). We consider four scenarios, depending on whether players use direct (a,c) or indirect (b,d) 
reciprocity and depending on whether pairs interact only a few times (a,b) or often (c,d). Each panel shows the payoff of cooperators and defectors 
depending on how many of the 50 population members are cooperators, for b = 5 and c = 1. In all four cases we find bistability (as indicated by the arrows 
on the x-axis). That is, defectors have the higher payoff when there are few cooperators and the lower payoff when there are many cooperators. However, 
the threshold number of cooperators necessary to make cooperation beneficial differs. Indirect reciprocity has the lower threshold when there are only few 
rounds, because cooperators are better able to restrict the payoff of defectors (as indicated by the smaller slope of the red line in b compared to a). Direct 
reciprocity has the lower threshold when there are many rounds. Here, already a few cooperators suffice to invade the defectors. In contrast, for indirect 
reciprocity cooperators need to establish a critical mass because their payoffs increase nonlinearly.
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Extended Data Fig. 3 | Impact of different model parameters on the co-evolution of direct and indirect reciprocity. We show how our evolutionary results 
in Fig. 5 are affected as we change different parameters of our model. In each panel, we vary one parameter and leave all others constant. We consider the 
same three scenarios as in Fig. 5a–c: few interactions and unreliable information (blue), intermediate interactions and reliable information (orange), and 
many interactions and unreliable information (green). We employ two complementary simulation techniques. In the upper half, each data point represents 
the average of a single simulation. This simulation was run for sufficiently long such that the averages converge and are independent of the initial condition. 
This typically happens after 107 mutant strategies have been introduced into the population. In the lower panels, each data point represents the average 
of 200 simulations with a random initial population. Here, each simulation only introduces 105 mutant strategies. For the parameters, we consider 
variation in the benefit-to-cost ratio (a,b), the population size (c,d), the selection strength (e,f), and the mutation rate (g,h). Our simulations suggest that 
each of these parameters can have a considerable impact on the evolving cooperation rates and the player’s propensity to adopt indirect reciprocity. For 
example, for the orange curve in panel e, we observe that the effect of selection strength on cooperation can be non-monotonic. We further discuss these 
dependencies in Extended Data Fig. 4 and SI Section 5. In general, however, we recover the following regularities from Fig. 5: (i) Substantial cooperation 
only evolves in the second and third scenario (that is, for the cooperation rates, the blue curve is systematically below the other curves). (ii) If cooperation 
evolves, players prefer indirect reciprocity when there are intermediately many interactions and outside information is reliable. They prefer direct 
reciprocity when there are many interactions and when outside information is noisy (that is, for the proportion of indirect reciprocity, the orange curve is 
systematically above the green curve).
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Extended Data Fig. 4 | Impact of selection strength on indirect reciprocity. As shown in the upper panel of Extended Data Fig. 3e, selection can 
sometimes have a non-monotonic effect on cooperation. For intermediate interactions and reliable information (δ = 0.9, ε = 0.001, depicted by the orange 
curve in Extended Data Fig. 3e), we have observed that the evolving cooperation rate is 53.4% for β = 1, increases to 77.3% for β = 10, and reduces to 61.5% 
for β = 100. Here we present additional simulations to shed further light on this non-monotonicity. a,b, We considered initial resident populations that 
either adopt a defective strategy or a conditionally cooperative strategy. We recorded how long it takes the evolutionary process until the resident strategy 
is replaced, and what the cooperation rate of the invading strategy is. Dots show the outcome of individual simulations, and the curves represent averages. 
The results suggest that the non-monotonicity of cooperation is not due to a reduced stability of cooperative strategies. They remain highly robust even 
for large selection strengths. Moreover, when selection is strong, they are typically invaded only by other cooperative strategies. c–e In a next step, we 
recorded the distribution of cooperation over time for three different selection strengths for the process considered in Extended Data Fig. 3e. We find 
that this distribution becomes more extreme with increasing selection strength: individuals either become highly cooperative or highly non-cooperative. 
However, the proportion of non-cooperative populations grows faster than the proportion of cooperative populations.
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Extended Data Fig. 5 | Evolution of cooperation for players with intermediate degrees of receptivity. In the main text figures Fig. 3–Fig. 5, we explore 
situations in which individuals can choose strategies where they either only take direct information into account (λ = 0), or where they take all information 
into account (λ = 1). Here we repeat these simulations in a setup where intermediate values of λ are permitted. To this end, we define a quantity γ. This 
quantity is the probability that a player’s decision is based on the co-player’s behavior towards third parties, see Eq. (10) in Methods. For 0 ≤ λ ≤ 1 we 
obtain 0 ≤ γ ≤ γmax ≔ (n − 2)/(n − 1). a,b, We repeat the simulations in Fig. 3a,b for various values of γ. We observe that cooperation is never most likely 
to evolve for intermediate values of γ. Either most cooperation evolves for γ = γmax (in panel a), or for γ = 0 (in panel b). c,d, Similarly, we repeat the 
simulations in Fig. 4d,f for various values of γ. Again, the average cooperation rates for intermediate γ are strictly in between the results for γ = 0 and 
γ = γmax. e–h, Finally, we repeat the simulations shown in Fig. 5a–d, allowing for mutant strategies (y, p, q, λ) that lead to arbitrary values of γ between 0 and 
γmax. Especially for larger error rates, we observe that the evolving cooperation rates are now smaller. Nevertheless, the general patterns of Fig. 5 remain: 
(i) When there are only few rounds and many observation errors, cooperation does not evolve. (ii) When there are intermediately many rounds and few 
errors, cooperation evolves and players tend to put more weight on indirect information (that is, γ tends to be larger than 1/2). In particular, strategies with 
γ ≈ γmax are most abundant. (iii) When there are many rounds and intermediately many errors, cooperation evolves and players tend to put more weight on 
direct information. Here, players are most likely to adopt a strategy with γ ≈ 0. See SI Section 5.4 for details.
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Extended Data Fig. 6 | Effect of different types of errors and incomplete information on cooperation. a, To explore how sensitive our results are to 
different kinds of errors and incomplete information, we have repeated the rare mutation simulations shown in Fig. 5d, reproduced here. b, While the 
baseline model assumes that only indirect observations are subject to perception errors, here we explore the effects when direct observations are equally 
prone to errors. We find that cooperation is substantially reduced compared to the baseline scenario. Moreover, direct reciprocity is only favoured for 
very large continuation probabilities. c, We have also explored the effect of additional implementation errors on cooperation. To this end, we assume here 
that players mis-implement their intended action with fixed probability e = 0.01. Compared to the baseline model without such errors, we find that there 
is less cooperation and less direct reciprocity. d, To mimic the dynamics that arises when defectors strategically conceal their bad actions, we have also 
considered a model in which defective actions are misperceived with probability ε, whereas cooperative actions are always observed faithfully. Because 
this assumption reduces the total rate at which errors occur compared to the baseline scenario, we observe more cooperation and players are more reliant 
on indirect reciprocity. e, Here we assume that individuals observe third-party interactions only with probability ν = 0.01. Due to the scarcity of information, 
players who take any third-party information into account are almost indistinguishable from those players who do not. As a result, cooperation is largely 
independent of observation errors, and the region in which indirect reciprocity is favoured has vanished. Unless noted otherwise, all parameters are the 
same as in Fig. 5d.
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Extended Data Fig. 7 | Direct and indirect reciprocity for finite-state automata with three states. In an extension of our model, we allow players to assign 
more nuanced reputations to their co-players. We illustrate this approach by considering finite state automata with three states - good (G), neutral (N) 
and bad (B), with G as the initial state. We assume n − 1 residents employ the respective finite-state automaton strategy, while the remaining player uses 
either ALLC or ALLD. We simulate the players’ payoffs for various values of λ ∈ [0, 1]. We consider three different automaton strategies employed by the 
residents. The automata differ in how they deal with co-players that are assigned a neutral reputation. a, Players with the first automaton A1 are fully 
cooperative when they encounter a co-player with neutral reputation. This strategy can sustain cooperation among itself. However, a single ALLC player 
obtains approximately the same payoff as the residents, and hence can invade by (almost) neutral drift (d). b, According to the second automaton A2, 
players cooperate against neutral opponents with 50% probability. This strategy can be invaded by ALLC for all λ > 0 (e). c, According to A3, players defect 
against co-players with a neutral reputation. This strategy is not stable against ALLC for λ > 0 (f), and residents fail to cooperate with each other altogether.
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Extended Data Fig. 8 | Evolutionary competition between finite state automata, ALLC, and ALLD. We have explored the evolutionary dynamics when 
population members can choose between ALLC, ALLD, and one of the three finite-state automata introduced in Extended Data Fig. 7. a–c, First, we have 
explored the limit of rare mutations, using the same game payoffs as in Extended Data Fig. 7, and a fixed receptivity λ = 0.1. The numbers in each circle 
denote how often the respective strategy is played on average. Arrows illustrate how likely a single mutant fixes in the respective resident population. 
Solid arrows indicate that the fixation probability is larger than the neutral 1/n, whereas for dotted arrows this probability is smaller than neutral. We 
find that only the first automaton A1 can outperform both ALLC and ALLD. d–f, In a next step, we have explored the same scenario for a positive mutation 
rate μ = 0.01. The triangles represent the possible population compositions. Each corner corresponds to a homogeneous population, whereas the center 
corresponds to a perfectly mixed population. The color code reflects how often we observe the respective population composition over the course of 
evolution. We find that most of the time, populations are either in the neighborhood of ALLD, or they represent some mixture between the automaton 
strategy and ALLC. g–i, We have re-run the simulations in panels d–f, but now varying either the benefit of cooperation, the selection strength, or the 
mutation rate. In all cases, we observe that the first automaton is most favorable to cooperation. Interestingly, we observe the largest cooperation rate for 
intermediate mutation rates. This result, however, may be due to the fact that players can only choose from an unbalanced strategy space, as discussed in 
detail in SI Section 6.3.
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Extended Data Fig. 9 | Performance of leading-eight strategies under direct and indirect reciprocity. a, Previous research has suggested that there are 
eight stable third-order strategies of indirect reciprocity that can sustain cooperation22, called the leading eight, L1–L8. They consist of two components, an 
assessment rule and an action rule. The assessment rule determines how players evaluate each other’s actions, depending on the previous reputations of 
the involved players. The action rule determines how to interact in the game, depending on one’s own reputation and on the reputation of the co-player. 
b–i, To explore the stability of these strategies, we consider a population in which n − 1 players adopt one of the leading-eight strategies. The remaining 
player either adopts ALLC or ALLD. Our results for λ > 0 reflect previous findings33: in the presence of perception errors, all leading-eight strategies are 
susceptible to invasion by either ALLC or ALLD. Only for λ = 0 (when perception errors are absent), the leading-eight strategies are stable against both 
mutant strategies.
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Extended Data Fig. 10 | Evolutionary dynamics of the leading-eight. Similar to Extended Data Fig. 8 for finite state automata, this figure explores how 
each of the leading-eight fares in an evolutionary competition against ALLC and ALLD for a fixed receptivity λ = 0.1. a–h, When mutations are rare, only 
‘Judging’ (L8) is played in notable proportions. However, in the presence of perception errors, this strategy tends to assign a bad reputation to other players 
with the same strategy, such that everyone defects eventually33. i–p, When mutations are more common, some of the leading-eight strategies can stably 
coexist with ALLC. We observe such cooperative coexistences for L1, L2, and L7. q–s, These three strategies also yield substantial cooperation rates when 
we vary the benefit of cooperation, the selection strength, and the mutation rate. With respect to mutation, we again observe that intermediate mutation 
rates are most favorable to cooperation. However, this finding may not be robust, because the strategy space is again unbalanced. For a more detailed 
discussion, see SI Section 6.4.
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