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Abstract

Indirect reciprocity is a key mechanism for large-scale cooperation. This mechanism
captures the insight that in part, people help others to build and maintain a good
reputation. To enable such cooperation, appropriate social norms are essential. They
specify how individuals should act based on each others’ reputations, and how
reputations are updated in response to individual actions. Although previous work has
identified several norms that sustain cooperation, a complete analytical characterization
of all evolutionarily stable norms remains lacking, especially when assessments or actions
are noisy. In this study, we provide such a characterization for the public assessment
regime. This characterization reproduces known results, such as the leading eight norms,
but it extends to more general cases, allowing for various types of errors and additional
actions including costly punishment. We also identify norms that impose a fixed payoff
on any mutant strategy, analogous to the zero-determinant strategies in direct
reciprocity. These results offer a rigorous foundation for understanding the evolution of
cooperation through indirect reciprocity and the critical role of social norms.

Author summary

Understanding how cooperation can evolve and be sustained is a central question in
evolutionary biology and social science. One prominent explanation is indirect
reciprocity, where individuals help others to build a good reputation and receive help in
future. For this mechanism to work, societies rely on social norms — shared rules that
specify how actions are judged and thereby how reputations are updated. Previous
studies have proposed specific norms that support cooperation. However, it has
remained unclear what general conditions make a norm evolutionarily stable. In this
study, we develop a mathematical framework to analytically derive such conditions. Our
theory reproduces well-known results, and it extends to more complex scenarios
involving non-negligible errors and costly punishment. These findings deepen our
understanding of the evolution of cooperation and offer insights into how robust social
norms can emerge and persist, even in noisy environments.
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1 Introduction

Cooperation is a crucial aspect of life, and indirect reciprocity is a key mechanism to
promote cooperation in human societies |1H6]. In indirect reciprocity, individuals decide
how to treat others based on each other’s reputations, and they cooperate to maintain a
good reputation. Unlike direct reciprocity, in which individuals reciprocate based on
their own experiences with others, indirect reciprocity relies on reputations as signals of
past behavior. A concern for a good reputation may incentivize people to cooperate
even with individuals they are unlikely to encounter again, enabling cooperation on a
larger scale. To promote cooperation through indirect reciprocity, it is essential to have
a proper “social norm”. Such norms specify two components: an action rule, which
prescribes how players should act based on others’ reputations, and an assessment rule,
which determines how reputations are updated in response to players’ actions.

A major aim of this field is to identify evolutionarily stable norms, particularly those
that promote cooperation. Previous studies have identified a number of such
cooperative norms [7H21]. Among these, the so-called “leading eight” norms have
received particular attention [9,/10] (see Table [1f for their definition). The leading eight
are fully cooperative, meaning that the population’s cooperation rate approaches one
when they are universally adopted. In addition, they are stable against invasion by any
rare mutant strategy. They are characterized by four guiding principles: (i)
Maintenance of cooperation: Good donors should cooperate with good recipients, and
doing so should preserve their good reputation. (ii) Identification of defectors: Donors
who defect against good recipients should be classified as bad. (iii) Justified
punishment: Good donors may defect against bad recipients without harming their own
reputation. (iv) Apology and forgiveness: Bad donors can restore their reputation by
cooperating with good recipients. Overall, human behavior seems to be largely
consistent with these principles, even though there is some mixed evidence on whether
people regard justified punishment as truly justified |2224].

To investigate cooperative norms, researchers have often focused on deterministic
social norms, in which the assessment rule assigns reputations with certainty. Because
the set of deterministic norms is finite, one can systematically enumerate all possibilities

and identify those capable of sustaining cooperation under evolutionary pressure [7H21].

This approach can also incorporate nonzero error rates, allowing for occasional mistakes
in actions or assessments. However, this enumerative method becomes infeasible for
stochastic norms. In stochastic norms, the assessment rule may assign reputations
probabilistically, leading to an uncountable number of possibilities [25[26]. To address
this challenge, Murase et al. [26] derived exact analytical conditions for evolutionarily
stable strategies (ESS) that sustain cooperation in the limit of vanishing error rates.
Nevertheless, the current theory on stochastic norms remains limited to those that yield
full cooperation in the vanishing-error limit. In this regime, the population converges to
a homogeneous cooperative state in which all individuals are regarded as good and
everyone cooperates. ESS conditions are then derived by analyzing whether rare
deviations from this cooperative baseline can be profitable.

In this work, we remove these restrictions. Our methodological innovation is to
calculate the long-term benefit of acquiring a good reputation, which in turn is the
critical quantity needed to assess evolutionary stability. This quantity is relatively easy
to derive under second-order social norms, where a donor’s reputation does not persist
beyond a single round, and it has been used to evaluate ESS [13}21,27]. Here, we
extend the derivation to third-order norms. By evaluating whether maintaining a good
reputation yields a higher long-term payoff than losing it, we can derive the necessary
and sufficient conditions for all evolutionarily stable social norms, regardless of the
cooperation level they sustain—an analysis that has been lacking. Importantly, our
framework does not require errors to be vanishingly rare; it applies to arbitrary error
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@) @ B) B,0) B, B)
S R(C) RD)|S R{C) RWD)|S RC) RD)|S RC) R(D)
L1 (Standing) C 1 0 D 1 1 C 1 0 C 1 0
L2 (Consistent Standing) | C 1 0 D 0 1 C 1 0 C 1 0
L3 (Simple Standing) C 1 0 D 1 1 C 1 0 D 1 1
L4 C 1 0 D 1 1 C 1 0 D 0 1
L5 C 1 0 D 0 1 C 1 0 D 1 1
L6 (Stern Judging) C 1 0 D 0 1 C 1 0 D 0 1
L7 (Staying) c 1 0 |D 1 1 |c 1 0 |D o 0
L8 (Judging) C 1 0 D 0 1 C 1 0 D 0 0

Table 1. The prescriptions of the leading eight. The top row (X,Y) indicates the
reputations of the donor and the recipient, respectively. For instance, (G, B) refers to
the case of a good (G) donor who meets a bad (B) recipient. The rules S, R(C), R(D)
indicate the prescribed action, the assessment when cooperation (C) is observed, and
the assessment when defection (D) is observed, respectively. An entry of 1 means the
donor is assessed as good and 0 means the donor is assessed as bad. Those columns in
which the leading eight differ from each other are highlighted in bold text.

rates. This generalization enables us to investigate more realistic scenarios, in which
mistakes in assessment, action, or perception can occur. We further extend the
framework to analyze additional actions beyond cooperation and defection, such as
costly punishment [13[21]. Finally, we identify a novel class of norms that enforce a
fixed payoff against any mutant strategy, reminiscent of zero-determinant strategies in
direct reciprocity [28].

The paper is organized as follows. In Section [2| we introduce the model and
establish useful notation. Section [3| develops our analytical framework and shows how to
calculate the long-term benefit of acquiring a good reputation. Using this framework,
we obtain the following main results: First, we derive necessary and sufficient conditions
for the evolutionary stability of third-order norms under various types of errors at
arbitrary rates. Second, we extend the framework to incorporate additional actions,
focusing on costly punishment. Third, we apply our results to investigate several special
cases (Section[d): (i) cooperative ESS in the limit of vanishing errors, (ii) cooperative
ESS with costly punishment in the limit of vanishing errors, (iii) stability of the leading
eight norms in the presence of various errors, and (iv) finally, we characterize a novel
class of norms, the “equalizer” norms, which enforce a fixed payoff against any mutant
strategy. The last section summarizes our findings and discusses their implications.

2 Model

In this study, we follow the basic framework of Ohtsuki and Iwasa [9]. We consider an
infinitely large population of players who interact in pairwise donation games. In each
round, two players are randomly chosen as a donor and a recipient, respectively. The
donor decides whether to cooperate (C) or to defect (D). Cooperation incurs a cost

¢ > 0 for the donor and results in a benefit b > ¢ for the recipient. Defection leads to a
payoff of zero for both players. If the donation game is only played once, the donor is
better off by defecting, creating a social dilemma. However, here we assume that
population members play many donation games, against different opponents. In that
case, their actions can affect their reputation, which in turn may influence how they are
treated in future.

We assume reputations are binary and public. That is, the reputation of a player
can be either good (G) or bad (B), and it is known to all other players without any
disagreement. How players form reputations, and how they act based on these
reputations, depends on their social norm. In our study, a social norm consists of an
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Donor 1. the donor Recipient

decides their action
S(G,B)=D

2. the donor’s reputation is updated

R(G,B,D)
Fig 1. Schematic representation of the model. At each time step, two players are
randomly chosen, one as the donor and the other as the recipient. The donor chooses an
action according to the action rule S(X,Y’), which depends on the reputation of the
donor X and the reputation of the recipient Y. After the interaction, the assessment
rule R(X,Y, A) determines the donor’s new reputation. This reputation depends on the
donor’s previous reputation X, the recipient’s previous reputation Y, and the donor’s
action A. The donor is assigned a good reputation with probability R(X,Y, A), which is
the effective assessment rule that accounts for errors in assessment. We repeat this
process indefinitely many times, and we are interested in the population’s long-term
behavior.

action rule and an assessment rule, as shown in Fig

Social norms are often categorized by their order, which reflects the information on
which actions and assessments are based. First-order norms assess the donor’s
reputation based solely on the donor’s action, without considering the context or the
recipient’s reputation. Second-order norms take into account both the donor’s action
and the recipient’s reputation, enabling distinctions such as justified vs. unjustified
defection. The action rule depends only on the donor’s reputation in first- and
second-order norms. Third-order norms additionally consider the donor’s own
reputation, allowing for more nuanced assessments. Assessment rules and action rules in
third-order norms can depend on the reputations of both the donor and the recipient.

Following 7 we consider a stochastic version of third-order social norms in this paper.

A social norm’s action rule S(X,Y’) determines which action a player takes as a
donor. This choice might depend on the player’s own reputation X as well as on the
reputation Y of the recipient, where X,Y € {G, B}. The output S(X,Y) € {C,D} is
the action that the donor takes. Here, we assume that the action rule is deterministic
(that is, donors cooperate with probability zero or one). This assumption is without loss
of generality, since stochastic action rules cannot be evolutionarily stable : For a
given context, the best response is uniquely determined except for the special cases
where the expected payoffs of the two actions are equal (in which case neutral drift
would be possible). In the following we exclude those special cases from our analysis.

A social norm'’s assessment rule R(X,Y, A) determines the probability that the
donor is assigned a good reputation after the interaction. This probability depends on
the previous reputation X of the donor, the previous reputation Y of the recipient, and
on the donor’s action A € {C, D} in the donation game. When the output of an
assessment rule R(X,Y, A) is constrained to be either zero or one for any input
(X,Y, A), the norm is deterministic; otherwise it is stochastic.

We introduce assessment errors, which occur when new reputations are assigned.
With probabilities u, the respective assignments are the opposite of the assignment
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prescribed by the social norm. As a result, instead of their intended assessment rules,
players implement the effective assessment rules

R(X,Y,A) = (1 - p) R(X.Y, A) + p[1 - R(X.Y, A)]. 1)

In the presence of these errors, we obtain the constraint 1 < R(X,Y, A) < 1—u. When
> 0, the reputation dynamics are ergodic. This means that over time, the system
explores all possible reputation states and that its long-term behavior becomes
independent of the initial reputation configuration [26].

In agreement with the seminal work of Ohtsuki and Iwasa [9}/10], we consider a
public assessment model. That is, all players learn the same information and share the
same assessment of any given population member at any point in time. These shared
assessments can change in time, depending on the population members’ interactions.
Herein, we assume players interact in sufficiently many donation games such that their
reputation assignments reach a stationary state.

In the remainder of this article, we focus on identifying which social norms are ESS.

We refer to the norm adopted by the majority of the population as the resident norm.
For positive error rates, we require the resident norm to form a strict Nash equilibrium:
if an infinitesimal minority of the population adopts a different norm, the minority
receives a strictly lower payoff than the residents. Because in the public assessment
model the reputation-updating mechanism is externally defined and shared at the
population level, individual mutants cannot change it. It is therefore sufficient to
consider mutants with different action rules but identical assessment rules as the
resident. Note that under this framework, at most two different norms can be present at
any time. Thus, we do not consider scenarios in which multiple action rules coexist
simultaneously [29].

We also focus on the particularly important special case, already discussed, of social
norms that are not only ESS but also self-cooperative. When a self-cooperative norm is
adopted by everyone, the population’s cooperation rate approaches one in the limit of
rare errors. We refer to such norms as cooperative ESS (CESS) [10L{141[26].

3 Results

To characterize all ESS, we first describe how reputations evolve over time. As a crucial
measure, we obtain the equilibrium fraction of good players in the population

(Section . Using this equilibrium fraction, we calculate the long-term benefit of
acquiring a good reputation (Section . Based on these results, we derive necessary
and sufficient conditions for a social norm to be an ESS (Section [3.3)). These conditions
are then naturally extended to account for other types of errors (Section and for
additional actions (Section [3.5)).

3.1 Description of the reputation dynamics

Consider a homogeneous population with action rule S(X,Y’) and assessment rule
R(X,Y, A), which together define the resident norm. At any given time ¢, let h(t)
denote the fraction of players with a good reputation. Similarly, 1—h(t) is the fraction
of players with a bad reputation. Then h(t) obeys the following differential equation,

h(t) = h(t)’Rs(G,G)
+ h(t) (1=h(t))[Rs (G,B) + Rs (B,G)]
+ (1=h(t))’Rs (B, B)
— h(t).

(2)
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In this expression, Rg (X,Y") is the probability to assign a good reputation to the donor
if the donor’s and recipient’s initial reputations are X and Y, respectively. This
probability is defined as

Rs(X,Y)=R(X,Y,5(X,Y)). (3)

As t— 00, the proportion of good population members h(t) converges to a fixed point
h*€[0,1]. This fixed point is unique and stable, because the above equation is quadratic
with respect to h and because ﬁ\hzl < 0 and h|h:0 > 0 when p, > 0. By plugging h=0
into Eq. , the stationary value is obtained as a solution to the quadratic equation

Cgh*2 —+ Clh* —+ Co — 0, (4)
where co, ¢1, and cg are defined as

co = Rg (G, G)— Rs(G,B) — Rs (B,G) + Rs (B,B)
¢1 =Rs(G,B)+ Rs (B,G) —2Rs (B,B) — 1 . (5)
¢o = Rs (B, B)

The unique solution ~* € [0, 1] to the quadratic equation is

B {_Cl_ Veizdesco oy co #0

2¢co
—z—‘l’ when ¢y = 0.
(The other solution to the quadratic equation is not in the unit interval [0, 1]).
At the stationary state, the probability that a donor takes action A € {C, D} when
interacting with another member of the population is

P = Bxa(G, G) + B (1=1") [xa(G, B) + xa(B, G)] + (1-h*)*xa(B, B). (7)

Here, “res” refers to an individual following the resident norm, and the arrow denotes
donor — recipient. Thus, p'y® 7" is the probability that a resident donor takes action
A toward a resident recipient. Moreover, x 4 is an indicator function defined by:

1 ifSX,)Y)=A4
X, Y)= ’ 8
Xal ) {0 otherwise. ®
In particular, for the social norm to be self-cooperative, p{¥*~"* must converge to one

as u — 0.

3.2 Long-term benefit of having a good reputation

In the following, we derive a necessary and sufficient condition for a social norm to be
an ESS. To this end, we first calculate the expected long-term payoff of a player who is
currently assigned a good or a bad reputation, respectively. We use this expression to

check if the social norm’s action rule is the unique best response in all possible contexts.

Here, the possible contexts refer to all possible combinations of the donor’s and the
recipient’s reputations, (G, G), (B, G), (G, B), and (B, B).

Suppose there is a good player following the social norm (R,.S). We consider the
player’s cumulative payoff for the subsequent 7' rounds,

v =3 (). 9)

t=1
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Here, <7r(Gt)> is the expected payoff in the ¢-th round, given the player initially has a G

reputation. A round is defined as a single donation game, in which the player is the
donor or the recipient, each with probability 1/2. The cumulative payoff vg) for a B
player is defined analogously.

To derive an explicit expression for the cumulative payoff vg), consider a focal player
with an initially good reputation. We distinguish two possible cases that could occur in
the player’s next game. (%) If the player happens to act as the recipient in the next
game, this player receives a benefit b with probability h*xc (G, G) + (1 — h*)xc (B, G),
because the donor is G with probability h* and B with probability 1 — A*. In that case,
the player maintains their previous reputation. (i) Alternatively, if the player acts as
the donor, this player pays the cost ¢ with probability h*xc(G, G) + (1 — h*)xc(G, B).
Now, the player’s reputation is updated according to the assessment rule R. The donor
is assigned a good reputation with probability Rs (G, G) if they met a G recipient, and
with probability Rg (G, B) if they met a B recipient. If they obtain a good reputation,

they obtain the payoff v(GTfl) in the subsequent 7" — 1 rounds. If they obtain a bad

(T

reputation, their subsequent payoff is v -, Overall, the expected cumulative payoff of

a G player is

o =5 [plhxe (6,6)+ (1= ) xe (B, @) + o )]

1
5
1

+3

[f c[h*xe (G,G) + (1 — h*) xc (G, B)] (10)
+h* R (G,G)vl ™V + (1= 0") Rg (G, B) v Y
[ = R (G,G)of ™+ (1= 1) [1 = R (G, B) o] ).

Similarly, the expected payoff of a B player in the subsequent 7' rounds is

) B
oD = . {b [h*xc (G, B) + (1 —h*) xc (B, B)] + vl 1)}

+

N~ o

: [f c[h*xc (B,G) + (1 —h*) xc (B, B)] o
+h*Rg (B,G) v 4 (1 — h*) Ry (B, B) v
+ 1= Rs (B,G)]vff " + (1= n*) [ - Rs (B, B)] v ~V].

The difference between these two expected payoffs is

2
—c[hxco (A, G) + (1= h%) xo (A, B)] (12)

1
o) — (D) = = [b [h*xe (G, A) + (1 — h*) o (B, A)]

(o8 = ol V) (L4 B Rs (A,G) + (1 - ) Rs (A, B)}

Here, we use the following definitions for X € {G, B}
Xc (X7 A) = Xc (Xa G) — Xc (Xa B) )
XC(AvX)EXC(GaX)_XC(B7X)7 (13)
Rs (AaX) = Rs (GvX) — Rg (BaX)

As we saw in the previous section, the system converges to a stationary state where the
fraction of good players is h* irrespective of the initial reputation configuration.
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Therefore, the expected payoffs in the ¢-th round, <7T(Gt)> and <7Tg)>, converge to the

same value in the limit as ¢ — oco. Hence, the difference vg) — UJ(B,T) approaches a

constant value as T becomes large. Let us define the respective limit as
Av= gim (v —off"). 14
V= e v (4

We can obtain an implicit equation for Av by taking the limit T'— oo in Eq. . By
solving the resulting expression for Av, we obtain
Ao P (G A (A1) v (B.A)] — el xe (A G +1-h) xo (AB))
1—h*Rs(A,G) — (1-h*)Rs (A, B)

The first term in the numerator can be interpreted as the expected benefit a G
player obtains compared to a B player. The second term is the expected cost a G player
additionally pays compared to a B player. The denominator indicates how long the
initial reputation lasts. When it takes more time steps to recover from a bad reputation,
Rs (A, G) and Rgs (A, B) tend to be larger. With such a “sticky” social norm, the
denominator becomes smaller and Av becomes larger. In other words, being assessed as
G has a larger impact on the player’s long-term payoff.

The expression simplifies considerably for second-order norms. In these norms,
neither the action nor the assessment depends on the donor’s reputation. As a result,
Rs (A,G) = Rg (A,B) =0 and x¢ (A,G) = xc (A, B) =0 hold. If we further assume
a discriminating action rule, which prescribes cooperation for good recipients and
defection for bad recipients, then xo (G, A) = x¢ (B,A) = 1. In that case, Eq.
reduces to the simple form

Av =b. (16)

That is, under such a norm, the long-run advantage of a good reputation is
equivalent to receiving an additional benefit b in one round.

3.3 ESS conditions

A social norm is an ESS if and only if the resident action rule is the best response in all
possible contexts, (G, G), (B,G), (G, B), and (B, B).

First, let us consider the context (G, G) as an example. For S(G,G) = C to be the
best response, the following condition must hold:

—c+R(G,G,C)Av > R(G,G, D) Aw. (17)

The left-hand side of the equation is the expected payoff of a G player when they
cooperate, and the right-hand side is the expected payoff when they defect. The
equation can be simplified as follows,

R(G,G,C)— R(G,G,D)| Av > c. (18)

The left-hand side of the equation is the expected long-term benefit of having a good
reputation while the right-hand side is the immediate cost of cooperation. If this
inequality holds, S(G, G) = C is the best response. Conversely, if the inequality is
reversed, S(G, G) = D is the best response. Similarly, we can analyze the other possible
contexts. As a result, we obtain the following characterization of ESS norms.

Theorem 1. A third-order social norm with assessment rule R(X,Y, A) and action
rule S(X,Y) is an ESS if and only if

[E(X,KC)—E(X,KD)}AWC if S(X,Y)=C
19
[E(X,Y,C)fﬁ(X,Y,D)}Av<c ifS(X,Y)=D 19
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holds for all possible contests (X,Y) € {(G,G), (G, B),(B,G),(B,B)}.

Consider ALLD (Always Defect: S(x,G) = S(*, B) = D) as an example. Under this
norm, Av = 0 because x¢ (G, A) = x¢ (B,A) = xc (A,G) = xc (A,B) =0. As a
result, Eq. is satisfied for all contexts (X,Y") because the left-hand side evaluates
to zero.

3.4 ESS conditions with perception and implementation errors

So far, we have considered only assessment errors. In the following, we show how the
respective results can be applied to other types of errors, by rescaling the effective
assessment rules and the effective benefit and cost of cooperation.

First, we consider the case of misperception errors. Specifically, we assume that
when a player defects, the action is mistakenly perceived as cooperation with
probability epc (it is correctly perceived as defection with probability 1 — ep¢). This
assumption may reflect, for example, that defectors have a natural incentive to deceive
bystanders and to misrepresent their actions. In this case of such misperception errors,
the effective assessment rule becomes

R(X,Y,C)" = R(X,Y,0) 20)
R(X,Y7D)* =1 —-epc) R(X,)Y,D)+epcR(X,Y,C),
for any X,Y € {G, B}. The ESS conditions for the case with the perception error is the
same as Eq. 7 but now with the rescaled assessment rules. Similarly, we could also
consider other types of perception errors, such as the case where cooperations are
misperceived as defections.

Implementation errors represent another type of error that is frequently studied in
the literature. When actions are subject to implementation errors, individuals who
intend to cooperate may sometimes defect, for example because of a lack of resources.
Let . be the respective (implementation) error rate. Note that here, we assume that
defections are always implemented perfectly, without errors. In the presence of such
implementation errors, the cooperation probabilities x¢ (X,Y') are rescaled as
(1 — pe) xo (X,Y). In the above analysis, this rescaling in x¢ (X,Y) is equivalent to
the rescaling of the effective assessment rules and the effective benefit and cost of
cooperation,

R(X,Y,C) = (1 = pe) R(X,Y,C)" + peR (XY, D)’
R(X,Y,D)* = R(X,Y,D)"

bt =(1—pe)b

t=(1-pe)e,

(21)

Here, the effective assessment rule R (X,Y, C’);t indicates the probability that an
X-donor is assigned a good reputation, given they intended to cooperate with Y. In
that case, the donor pays the effective cost while the recipient receives the effective
benefit. The ESS condition for the case with the implementation error is the same as
Eq. but with the rescaled parameters,

[E (X,Y,C0) - R(X,Y, D)i} Avt >t if S(X,Y) =C,
_ _ (22)
[R (X,Y,0) — R(X,Y, D)*] Avt < et i S(X,Y) = D.

Here, Avt is Av in Eq. with the appropriately rescaled parameters.
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To gain insights into the effect of these errors, let us consider the L6 norm (Stern
Judging) as an example. According to Eq. , L6 is an ESS if and only if

by !
¢ (I—epc)(l—pe)(1—2p)

As the error rates p, p., and epe increase, the lower bound of b/c diverges and
cooperation gets harder to maintain. This reproduces the results in [21].

(23)

3.5 ESS conditions when other actions are available

We can also extend the above analysis to the case where additional actions are available.
As an example, we consider the case that a player can exert costly punishment (P). In
that case, the donor reduces the recipient’s payoff by 5 > 0, at an own cost of a > 0.
The resulting dynamics of A* remains the same as Eq. and the solution for h* is the
same as Eq. @ The analysis in Section is also valid for the case with punishment,
except that now we need to consider the additional action P. The expected payoff of a
G player in the subsequent 7" rounds becomes

o) = % [pIr*xe (G.6) + (1= B*) xc (B, G)

— Bl xp (G,G) + (1= h*) xp (B,G)] + 0o V)

5 [Cab e (€.0)+ (- ) xe (G, B) (24)
—alh*xp (G,G)+ (1 - h")xp (G, B)]
+h*Rs (G,G) v P+ (1—h*) Rs (G, B)vg
+R L= Rs (GG ol Y+ (1= 1) 1= Rs (G, B) oy V)],
where xp (X,Y) is the punishing probability, defined analogously to Eq. . The
difference between the expected payoffs of a G and a B player is now

1
vg ! =g = [b [W*xc (G, A) + (1= h*) xc (B, A)]

—c[h*xc (A, G) + (1= h%) xc (A, B)]
—a[pxp (G, A)+ (1= h") xp (B,A)] (25)
- B [h*XP (Av G) + (1 - h*) XP (Av B)}

+ (0 = o ) {1+ R (A,G) + (1= B) Rs (A, B)} |,

where xp (X,A) and xp (A, X) are defined analogously to x¢ (X, A) and x¢ (A, X),
respectively. The expected payoff difference Av is obtained by taking the limit of
T — oo in Eq. .

_ bxc (b, A) = cxc (A, h*) = BXp (h*, A) — axp (A, hY)

Av 1—h*Rs (A,G)— (1— h*)Rs (A, B) ’ (26)
where we defined
Xc (h*,A) =h*xc (G, A) + (1 = h") xc (B, A)
Xc (A RY) = h'xe (AG)+ (1 —h*) xec (A, B) 27)
X5 (0, A) = h*xp (G, A) + (1 — h*) xp (B, A)
xp (AR ) =h"xp (A,G)+ (1 —h")xp (A, B).
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Using Aw, we can derive the ESS conditions for norms with punishment. The action
prescribed by the social norm is the unique best response for context (X,Y") if and only
if both other actions yield lower payoffs. For instance, the action rule S(X,Y) = C is
the best response if and only if

[]?E(X,Y,C)—]SL(X,Y,D)} Av > ¢ and |:§ (X,Y,C)—R(X.,Y, P)} Av>c—a. (28)
Similarly, the action rule S(X,Y) = D is the best response if and only if
[E (X,Y,D)-R(X.Y, C)} Av> —c and [E (X,Y,D)ff%'(X,Y,P)} Av > —a. (29)

Finally, the action rule S(X,Y) = P is the best response if and only if

[E(X7Y7P)—E(X,Y7O)} Av>a—c and [R(X,Y,P)—R(X,Y,D)} Av > a. (30)

The social norm is an ESS if and only if the above conditions hold for all contexts
(X,Y) € {(G,G),(G,B),(B,G),(B,B)}. It is straightforward to generalize the above
analysis to the case where further actions are available.

4 Special cases

To illustrate the scope and power of our analytical framework, we next apply it to
several special cases that have been central to the literature on indirect reciprocity.
First, we characterize cooperative ESS in the limit of vanishing errors, showing how our
framework recovers previous results (Section 4.1). Second, we analyze the role of costly
punishment in promoting cooperation (Sectio. Third, we study the stability of the
leading eight norms in the presence of errors (Section . Finally, we identify a novel
class of “equalizer” norms that enforce fixed payoffs against any mutant strategy

(Section [£.4)).

4.1 Self-cooperative ESS in the limit of vanishing error rates

In this section, we focus on cooperative ESS (CESS), which are a special subset of the
ESS norms. A norm is a CESS if it satisfies the following two conditions in the limit of
vanishing error rates,

a []le SOCial norm iS 1ully Self—COOpeI‘ative, i.e., pr STrres — as — O .
C l‘l’

In the following, the effective assessment rule converges to the original assessment rule,
R(X,Y,A) » R(X,Y,A), as p — 0.

First, we show that for any such CESS, either h* = 1 or A* = 0 must hold. Assume
to the contrary that 0 < h* < 1, such that there are both good and bad players in the
population. For the norm to be self-cooperative, the action rule then needs to prescribe
cooperation in all possible cases. The resulting norm of unconditional cooperation,
however, is not an ESS. As the two labels G and B are interchangeable [9], we consider
without loss of generality the case that h* =1 in the following. When the respective
social norm is adopted by the entire population, we assume everyone is assigned a good
reputation eventually.
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First, we check the condition (a). To have h* = 1, the following conditions are necessary
and sufficient:

hlp=1 =0

=1+ . . (31)
dh <0
dh h=1

The first equation on the right hand side makes sure there is a fixed point at h = 1. The
second inequality indicates that this fixed point is stable. By Eq. these two
requirements are equivalent to the following conditions,

{RS (G,G)=1

(32)
Rs (G,B)+ Rs (B,G) > 1.

Given these conditions are satisfied, the social norm is self-cooperative if and only if
S(G,G) =C. (33)

We conclude that the self-cooperative norms in which all population members have a
good reputation are exactly those that satisfy conditions and . For
self-cooperative norms, h* = 1, Eq. simplifies to

_ bxc (G, A) —exe (A, G)

A
Y 1-Rs (A, G)

(34)

Second, we check the ESS condition (b). To this end, we use Eq. for the contexts
(G,@), (G,B), (B,G), and (B, B) in the following.

1. For the context (X,Y) = (G, G), the ESS condition is

[R(G,G,C) — R(G,G, D) Av > ¢
[R(G5G7O) _R(GvG’D)} {b[l - Xc (G7B)] _C[l - Xc (B7G)]} > cRg (BrG)v
(35)

where we used Eqgs. and for the derivation of the second line. For this
inequality to hold, x¢ (G, B) = 0 is necessary. Thus,

[R(G,G,C)—R(G,G,D)]{b—c[l — xc (B,G)]} > cRs (B,G). (36)
2. For the context (X,Y) = (G, B) we have shown previously that the action rule

must prescribe S(G, B) = D. This is the best response if and only if

[R(G,B,D)—-R(G,B,C)]|Av > —c

R (G, B.D) — R(G,B.C) {b—cl - xc (B.G)]} > —cRs (B.G).

3. For the context (X,Y) = (B, G), the action rule may be either S(B,G) = C or
S(B,G) =D. When S(B,G) = C, the best response condition is

[R(B,G,C) — R(B,G,D)] Av > c

38
(R(B,G,C)— R(B,G.D) {b—c[l—ye (B.G)} > cRs (B,G). O
When S(B,G) = D, the best response condition is
R(B,G,D)— R(B,G,C)] Av > —
(R(B,G,D) ~ R(B,G,0)) Av > )

[R(BvaD) *R(B,G,C)] {b*C[l - Xc (BaG)]} > 7CRS (BaG)
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4. Finally, for the context (X,Y) = (B, B), the action rule S(B, B) = C' is the best
response if

When the inequality is reversed, S(B, B) = D is the best response.

[R(B,B,C) — R(B,B,D)] Av > c
[R(B,B,C)— R(B,B,D)]{b—c[l-xc(B,G)]} > cRs (B,G).

(40)

To summarize, a social norm constitutes a CESS if and only if one of two conditions is
satisfied. These conditions are distinguished based on the value of S(B, G), that is,

based on the action of a bad donor who encounters a good recipient.

When S(B,G) = C, the CESS condition is:

(G,G,C) -
(G,B,C) —
(B,G,C) o

Inv =N s

[
[
[

S(B,B) = {

C
D

R(G,G,
R(G, B,
R(B,G,

if [R(B,B,C)— R(B,B,D)|b>cR(B,G,C)
if [R(B,B,C)— R(B,B,D)|b< cR(B,G,C)

(G,B,D)+ R(B,G,C) > 1

D)|b> R (B,G,C)
D)|b< cR(B,G,C)
D)|b> cR(B,G,C)

If the assessment rule is additionally assumed to be deterministic, this set of conditions
reproduces the leading-eight social norms, as shown in the top row of Table [2l They are
stable for b > ¢ [26].

When S(B,G) = D, the CESS condition is:

R(G,G,C)
[R(G,B,C)
[R(B,G,C)
S(B,B) = {

C
D

R(G,G,D))
R(G,B,D)]

(
(

R(G,B,D)+ R(B,G,D) > 1

b—c)>cR(B,G,D)
b—c) <cR(B,G,D)

R(B,G,D)](b——¢) < cR(B,G,D)

if [R(B,B,C)— R(B,B,D)](b—c)> cR(B,G,D)
if [R(B,B,C) - R(B,B,D)](b—c) < cR(B,G,D)

If the norm is deterministic, we recover the secondary-sixteen social norms, see the
bottom row of Table [2l They are stable for b > 2¢ [26]. The leading eight and the
secondary sixteen are the only CESS when assessment rules are deterministic. In
contrast, in the stochastic case there exists a spectrum of CESS, characterized by the

conditions and .
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Reputation update
(Donor rep, Recipient rep) | Action rule based on action condition
(X,Y) S(X,Y) C D
(G,G) C 1 0
(G,B) D * 1 b>c
(B, Q) C 1 0
(G,G) C 1 0
(G,B) D * 1 b>2c
(B,G) D * 1

Table 2. Deterministic CESS in the limit of vanishing errors. The CESS can
be categorized into two classes, the leading-eight norms (top) and the secondary-sixteen
norms (bottom), respectively. In this table, the left most column indicates the original
reputations of the donor and the recipient. The second column then shows the norm’s
action rule and the third and fourth column its assessment rule. The rightmost column
gives the condition for the norm to be a CESS. The symbol * indicates that the
respective value can be either 0 or 1. In this table, the assessment rule for context

(B, B) is not shown as it can be arbitrary. Given the respective entries R(B, B, %) and
the environmental conditions {b, ¢}, the optimal action S(B, B) is uniquely determined.

4.2 Self-cooperative ESS norms with punishment

Next we consider the CESS norms when punishment is available. Suppose the action

rule is
S =C

(G.G)
S(G,B) = Agp € {D, P}
S(B,G) = Apg € {C,D, P}
S(B,B) = App € {C,D, P},
Note that S(G, G) must be C and S(G, B) must not be C' for the norm to be a CESS.
In the following, the two actions other than Agp are denoted as {AE B ASB}. For
instance, if Agg = D, then AEB =(C and AgB = P (or vice versa). We define ATBG,
AEG, ATBB, and AEB similarly. The social norm is a CESS norm if and only if the
following conditions are met,

(43)

R(G,G,C) =1
R(G,B,Agp) + R(B,G,Apg) > 1

[R(G,G,C) — R(G,G,D)] Av > (e — (p

[_R(GaGaC) _R(GaG7P)]A’U > gC _CP

R(G,B,AGB)—R G7B7AEB AU><AGB_<ALB

R(G,B,Acp) - R (G, B, All5) | Av> Cagp — Cunr. (44)
R(B,G,Apc) = R(B,G, A ) | Av > Cape = Cap

R(B,G,Apc) = R(B,G, Ag) | Av > Cape — Capt_
R(B,B,App) — R (B, B, Al ) | Av > Capp — 4

R(B,B,App) - R(B.B,Allp)| Av > Capp — Cat
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Here, (4 is defined as the instantaneous cost of action A,

c ifA=C
Ca=4q0 ifA=D
a ifA=P.

The marginal long-term payoff Av is

b/R(B,G,C) if (Agp,Apa) = (
(b+8)/R(B,G,C) if (Agp, Apa) = (
A =0 /R(B,G,D) if (Aap, Apc) = (
(b—c+pB)/R(B,G,D) if (Agp, Apag) = (
(b—c+a)/R(B,G,P) ( )= (
(b—c+a+p)/R(B,G,P) if ( )= (

(45)

As special cases, the deterministic CESS norms with punishment, summarized in S1

Appendix, fall into six classes.

4.3 Leading-eight norms with non-vanishing error rate

We can also derive the ESS conditions for the leading-eight norms when the error rates
are non-vanishing. Naturally, errors make the conditions for these norms to be ESS more
stringent; but how does it depend on the error rates? The leading-eight norms have

Xc (GvA) =1
Xc (B’A) = {
Xc (A’G) =0

xc (A, B) = {

Rs(A,G) =0

Rs (A, B

0 for L1,L2
1 for L3-L8

—1 for L1,L.2
0  for L3-L8

te (1 —€pc) (1 —2p)
(tte — €pc — peepc) (1 — 24)

0

epc (1 —2p)
—epc (1 —2p)
0

1—-2u

(1—epc) (1 —2u)

for L1
for L2
for L3
for L4
for Lb
for L6
for L7
for L8
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Plugging those into Eq. , we obtain

bh*+c(1—h*)
17(17h*)(%};3¢)/€f(1};3DC) fOI' L1
17(17}7’*)(172M)‘(/‘675DC*M36D0) for L2
b for L3
b
Av = 17(17}7,*)5]172#%[)0 for L4 (48)
1+(1-h*)(1—2p)epc for L5
b for L6
SO for L7
b
T—(I-r)(1—2m)(1—¢pc) for L8

Except for the second-order norms L3 and L6, these analytical expressions for Av
contain h*. While h* is analytically solvable as a root of the quadratic equation, the
expression is not simple enough to provide intuition. However, for 1.3 and L6 we can
derive a simple ESS condition based on Eq. :

¢ (1=2u) (1= pe) (1 —epc)

As p increases from zero to one half, or . increases from zero to one, or epc increases
from zero to one, the right-hand side diverges, indicating that the ESS condition
becomes increasingly hard to satisfy.

Interestingly, while many previous research concluded that L6 is the most successful
norm among the leading eight in evolutionary simulations [5}/12}30,31], L6 has exactly
the same ESS condition as L3. This theoretical prediction is accurately reproduced in
numerical calculations, as shown in Fig[2] Moreover, Eq. shows that the Av of L6
is always smaller than or equal to those of L4, L7, and L8, indicating that L6 has a
smaller ESS parameter region. These results suggest that L6 is not the best norm in
terms of its ESS parameter region. The evolutionary advantage of L6 over L3 cannot be
explained by the size of the ESS parameter region.

Instead, the advantage of L6 over 1.3 may come from a larger payoff difference
between residents and mutants. In Fig [3] we show the average payoff of the mutants
over all possible deterministic action rules other than the residents’ action rule. Since
L6 has a larger payoff difference, it is better able to resist invasion by the mutants,
despite having the same ESS condition as L3.

(49)

For completeness, the results for the other leading-eight norms are shown in S1 Fig 1.

We compare the numerically calculated results with the theoretical predictions obtained
from Eq. 7 which again shows perfect agreement. According to this figure, L7 has
the widest ESS region, indicating its robustness against errors.

4.4 Equalizer norms

Our analysis also allows us to identify a special class of norms that enforce the mutant’s

payoff to be the same as the payoff of the residents, irrespective of the mutant’s action.

We call such a norm an “equalizer”, in analogy of the respective class of
zero-determinant strategies in direct reciprocity [28].
To describe these norms formally, a social norm is an equalizer if and only if

R(X,Y,0) - R(X.,Y, D)} Av=c (50)

holds for all possible contexts (X,Y) € {(G,G), (G, B),(B,G),(B,B)}. When this
condition holds, cooperation and defection yield identical expected payoffs. Therefore,
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the mutant’s payoff no longer depends on the mutant’s action. Such equalizer norms
thus form a Nash equilibrium (but they are not an ESS since they allow for neutral
invasion).

The norms described by represent a generalization of the Generous Scoring
(GSCO) norm described by Schmid et al [25]. GSCO is a first-order norm defined by

S(x,G) =

S(x,B) = D,

R(*,%,C) =1, (51)
N (L)

It is straightforward to show that GSCO is an equalizer. Irrespective of the applied
norm of the mutant, its payoff exactly matches the payoff of the residents.

There are other examples of equalizer norms. For example, for second-order norms
with a perfectly discriminating action rule, we have Av = b, see Eq. . Such a norm
is an equalizer if and only if

C

Y, C) — Y,D)= —— 2
R(Y.0) = R(xY,D) = g=55 (52)
for any Y € {G, B}. In particular, the following is an equalizer,
S(x,G) =C,
S(*v B) =D,
R(*7 G7 C) = 1’
c
D)=1 53
R(x.G.D) =1~ = (5)
c
B —
R(x,B,D) =

To demonstrate the properties of equalizers, we present numerical examples in Fig 4 In
these examples, residents and mutants with different action rules receive exactly the
same payoffs.

Discussion

In this paper, we focus on indirect reciprocity under public assessment. Within this
setting, we analytically characterize all third-order evolutionarily stable norms (ESS).
Previously, most studies focused on ESS that are fully cooperative when error rates
were sufficiently small. Our analysis generalizes these results to cases where the
population is not fully cooperative and errors are no longer small. In this way, we
establish a more comprehensive foundation for the theory of indirect reciprocity. This
broader framework enables us to study a wider range of social norms and to investigate
their stability for arbitrary error rates. Moreover, it allows us to explore the effects of
additional actions beyond cooperation and defection — such as costly punishment.
Based on this framework, we obtain several important insights. First, in the limit of
vanishing error rates and deterministic norms, our results recover the well-known
leading-eight and the secondary-sixteen norms [9,[10L[26]. Second, we systematically
derive all cooperative ESS for the case when a costly punishment option is available.
The corresponding results successfully reproduce previous findings for second-order
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social norms |13}21]. Third, we analyze the robustness of the leading-eight norms under
varying error rates. This analysis shows that the two second-order norms L3 and L6
have exactly the same critical benefit-to-cost ratio, even though L6 is more punitive
against mutants than L3. Finally, we describe a novel class of norms, termed ‘equalizers’,
which unilaterally fix a mutant’s payoff to match that of the residents, regardless of the
mutant’s strategy. This is a generalization of the Generous Scoring (GSCO) norm [25]
and is reminiscent of the zero-determinant strategies of direct reciprocity [28]. All of
these analytical findings are further supported numerically (see also S1 Appendix).

As the main methodological innovation of our study, we focus on a key variable: the
long-term benefit of having a good reputation, denoted Awv. This quantity captures the
advantage of maintaining a good reputation instead of getting a bad one. It provides
the critical basis for deriving necessary and sufficient conditions for all ESS, regardless
of the cooperation level they sustain. In the following, we discuss how this quantity is
related to previous approaches. In reinforcement learning, the value of being in a
certain state, referred to as the “state value function”, is calculated using the Bellman
equation. Ohtsuki et al. [13] apply the Bellman equation to calculate the value of being
good vg) in the context of costly punishment (a similar approach is used in the context
of repeated games, where it is often referred to as the continuation payoff). While this
method is versatile, a discount factor must be introduced to ensure that the
continuation payoff converges. A simpler approach is to calculate the difference between
the values of being good and bad (our Av), which is sufficient to determine whether a
norm is an ESS. Even if vg) and vg) both diverge, the difference Av remains finite,
and no discount factor is needed.

In Ref. [21], the relationship Av = b is derived for second-order norms. This
relationship is then used to calculate the ESS conditions when there is also a costly
punishment option. Ref. [26] derives the ESS conditions for fully cooperative norms.
There, a quantity akin to Av is computed assuming that the population mostly consists
of good players. The present paper extends those previous analyses to general
third-order norms. Our framework allows for analytical solutions, even when error rates
do not vanish and when the population is not fully cooperative. Still, our analysis relies
on the assumption of binary reputations. When reputations are not binary [20L32}33],
analytical approaches become significantly more complex. We leave this extension for
future work.

For direct reciprocity, it is possible to identify four classes of equilibrium behavior
among memory-1 strategies of the repeated prisoner’s dilemma [34]. In equilibrium,
players are either fully cooperative, fully defective, they engage in alternating
cooperation, or they apply equalizers. A natural question is whether the ESS norms of
indirect reciprocity can be categorized similarly. Our analysis, however, shows that such
a classification with a handful of distinct categories is infeasible. Instead, ESS norms of
indirect reciprocity can support arbitrary levels of cooperation. To illustrate this point,
consider a second-order norm using a discriminating action rule. The respective ESS
conditions, as given by Eq. , are [R(x,G,C) — R(x,G,D)]b > ¢ and
[R (+,B,C) — R (%, B,D)]b < c. These inequalities constrain the differences in
assessment values (e.g., [R (x,G,C) — R (x,G, D)]), but not their absolute values. As a
result, a wide range of average cooperation levels can be realized in an ESS.

In our analysis, we assume that the population is monomorphic, i.e., all individuals
use the same social norm, and we explore whether this norm is stable against invasion
by rare mutants. While this is one of the most standard approaches to assess the
stability of social norms, it is also important to consider the evolutionary dynamics of
polymorphic populations, where players with multiple action rules may coexist.
Furthermore, another interesting direction would be to investigate multiple social norms
coexisting in a population. Although we leave these for future work, it would be

October 8, 2025

1824

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

462

463

464

465

467

468

469

470

472

473

474

475

477

478

479

480

481

482

483

484

486

487

488

489

490



Assessment error (u) 0.02 Assessment error (u) 0.04 Assessment error (u) 0.06 Assessment error (u) 0.08

Assessment error (u) 0.002
0.1

Not ESS

-
w
Perception error (epc)

Not ESS

-
o
Perception error (epc)

N

0.0
0.0 002 004 006 008 0.1 00 002 004 0.06 008 0.1 00 002 004 006 0.08 0.1 00 002 0.04 006 008 0.1 00 002 004 0.06 0.08 0.1
Implementation error (e) Implementation error (e) Implementation error (e) Implementation error (e) Implementation error (e)

Fig 2. ESS conditions for L3 and L6 under non-vanishing error rates. To
obtain numerical evidence, we systematically vary the assessment error rate (i), the
perception error rate (ep¢), and the implementation error rate (p.), for a game with
benefit b = 1 and cost ¢ = 0.8. The respective process is described in S1 Appendix.
Regions where the ESS conditions are satisfied are shown in blue, while regions where
they are not satisfied are shown in red. The solid white line represents the theoretical
prediction based on Eq. . In each case, the theoretical prediction accurately
reproduces the numerical results, confirming the validity of our analysis. The figure also
highlights that the ESS conditions for L3 and L6 are identical. We repeat the same
analysis for the other leading-eight norms, L1, L2, L4, L5, L7, and L8. The respective
results are shown in S1 Fig 1.

valuable to analyze the evolutionary dynamics of polymorphic populations extending
the framework developed in this paper.

Finally, we note that our analysis is based on the assumption of “public assessments”.

That is, all individuals are assumed to agree on each others’ reputations. This, of course,
is a strong idealization. Many real-world social interactions may be more accurately
described by a “private assessment” model, where individuals are allowed to disagree on
how they view others [35-47]. Still, the public assessment model often serves as a useful
reference point for theoretical exploration. Moreover, as a recent study has shown, the
public assessment model and the private assessment model are not completely
independent; rather, they can be unified within a single framework . In light of this
recent progress, we believe our analysis offers a solid foundation for advancing the
understanding of indirect reciprocity, including in the context of private assessments.
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S1 Appendix

S1 Appendix details the numerical verification of ESS conditions and provides a
complete classification of deterministic CESS norms with punishment. For each case, we
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Fig 3. Payoff differences between residents and mutants for L3 and L6
norms. We analyze the robustness of the leading norms L3 and L6 by setting each as
the resident norm and considering all 15 possible mutant deviations in the action rule.
For each case, we compute the expected payoff of the resident and compare it to the
average payoff of the mutants, plotting the difference. We do this for two cooperation
cost scenarios: low (0.2) and high (0.6). In both scenarios, deviations from L6 result in
larger payoff differences than deviations from L3, suggesting that it is more costly to
deviate from L6 than from L3. Parameters: b =1, and y = p. = epc = 0.1.

Generous Scoring Cautious Scoring

s Resident
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Fig 4. Equalizer norms. Equalizer norms impose a fixed payoff on any mutant norm.
We demonstrate this property using a numerical example with two resident norms:
Generous Scoring (left) and Cautious Scoring (right; defined in Eq. (53)). Both norms
are first-order and use the discriminator (DISC) action rule, S(x,G) = C' and

S(x, B) = D. For the mutant, we consider three deterministic deviations in the action
rule: ALLC (Always Cooperate: S(x,G) = S(*, B) = C'), ALLD, and anti-discriminator
(ADISC: S(*,G) = D, S(*, B) = C). As expected, the mutant’s payoff equals that of
the resident. Parameters: b =1, ¢ = 0.1, p = 0.01, and p. = epc = 0.0.
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present the norms that satisfy the CESS criteria and the corresponding parameter
regimes.

S1 Fig. ESS conditions of the leading eight strategies under
non-vanishing error rates

Similar to Fig. 2 of the main text, we show numerical examples of the ESS conditions
for the leading eight norms when error rates can be positive. Regions where the ESS
conditions are satisfied are shown in blue, and those where they are not satisfied are in
red. The theoretical predictions are shown as solid white line. Parameters: b =1 and
c=0.8.
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