
Exact conditions for evolutionary stability in indirect
reciprocity under noise

Nikoleta E. Glynatsi1,2*, Christian Hilbe3,Yohsuke Murase1,2,4

1 RIKEN Center for Interdisciplinary Theoretical and Mathematical Science (iTHEMS),
Wako, Japan
2 RIKEN Center for Computational Science, Kobe, Japan
3 Interdisciplinary Transformation University, Linz, Austria
4 Graduate School of Science and Engineering, Saitama University, Saitama Japan

* nikoleta.glynatsi@riken.jp

Abstract

Indirect reciprocity is a key mechanism for large-scale cooperation. This mechanism
captures the insight that in part, people help others to build and maintain a good
reputation. To enable such cooperation, appropriate social norms are essential. They
specify how individuals should act based on each others’ reputations, and how
reputations are updated in response to individual actions. Although previous work has
identified several norms that sustain cooperation, a complete analytical characterization
of all evolutionarily stable norms remains lacking, especially when assessments or actions
are noisy. In this study, we provide such a characterization for the public assessment
regime. This characterization reproduces known results, such as the leading eight norms,
but it extends to more general cases, allowing for various types of errors and additional
actions including costly punishment. We also identify norms that impose a fixed payoff
on any mutant strategy, analogous to the zero-determinant strategies in direct
reciprocity. These results offer a rigorous foundation for understanding the evolution of
cooperation through indirect reciprocity and the critical role of social norms.

Author summary

Understanding how cooperation can evolve and be sustained is a central question in
evolutionary biology and social science. One prominent explanation is indirect
reciprocity, where individuals help others to build a good reputation and receive help in
future. For this mechanism to work, societies rely on social norms — shared rules that
specify how actions are judged and thereby how reputations are updated. Previous
studies have proposed specific norms that support cooperation. However, it has
remained unclear what general conditions make a norm evolutionarily stable. In this
study, we develop a mathematical framework to analytically derive such conditions. Our
theory reproduces well-known results, and it extends to more complex scenarios
involving non-negligible errors and costly punishment. These findings deepen our
understanding of the evolution of cooperation and offer insights into how robust social
norms can emerge and persist, even in noisy environments.
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1 Introduction 1

Cooperation is a crucial aspect of life, and indirect reciprocity is a key mechanism to 2

promote cooperation in human societies [1–6]. In indirect reciprocity, individuals decide 3

how to treat others based on each other’s reputations, and they cooperate to maintain a 4

good reputation. Unlike direct reciprocity, in which individuals reciprocate based on 5

their own experiences with others, indirect reciprocity relies on reputations as signals of 6

past behavior. A concern for a good reputation may incentivize people to cooperate 7

even with individuals they are unlikely to encounter again, enabling cooperation on a 8

larger scale. To promote cooperation through indirect reciprocity, it is essential to have 9

a proper “social norm”. Such norms specify two components: an action rule, which 10

prescribes how players should act based on others’ reputations, and an assessment rule, 11

which determines how reputations are updated in response to players’ actions. 12

A major aim of this field is to identify evolutionarily stable norms, particularly those 13

that promote cooperation. Previous studies have identified a number of such 14

cooperative norms [7–21]. Among these, the so-called “leading eight” norms have 15

received particular attention [9, 10] (see Table 1 for their definition). The leading eight 16

are fully cooperative, meaning that the population’s cooperation rate approaches one 17

when they are universally adopted. In addition, they are stable against invasion by any 18

rare mutant strategy. They are characterized by four guiding principles: (i) 19

Maintenance of cooperation: Good donors should cooperate with good recipients, and 20

doing so should preserve their good reputation. (ii) Identification of defectors: Donors 21

who defect against good recipients should be classified as bad. (iii) Justified 22

punishment: Good donors may defect against bad recipients without harming their own 23

reputation. (iv) Apology and forgiveness: Bad donors can restore their reputation by 24

cooperating with good recipients. Overall, human behavior seems to be largely 25

consistent with these principles, even though there is some mixed evidence on whether 26

people regard justified punishment as truly justified [22–24]. 27

To investigate cooperative norms, researchers have often focused on deterministic 28

social norms, in which the assessment rule assigns reputations with certainty. Because 29

the set of deterministic norms is finite, one can systematically enumerate all possibilities 30

and identify those capable of sustaining cooperation under evolutionary pressure [7–21]. 31

This approach can also incorporate nonzero error rates, allowing for occasional mistakes 32

in actions or assessments. However, this enumerative method becomes infeasible for 33

stochastic norms. In stochastic norms, the assessment rule may assign reputations 34

probabilistically, leading to an uncountable number of possibilities [25,26]. To address 35

this challenge, Murase et al. [26] derived exact analytical conditions for evolutionarily 36

stable strategies (ESS) that sustain cooperation in the limit of vanishing error rates. 37

Nevertheless, the current theory on stochastic norms remains limited to those that yield 38

full cooperation in the vanishing-error limit. In this regime, the population converges to 39

a homogeneous cooperative state in which all individuals are regarded as good and 40

everyone cooperates. ESS conditions are then derived by analyzing whether rare 41

deviations from this cooperative baseline can be profitable. 42

In this work, we remove these restrictions. Our methodological innovation is to 43

calculate the long-term benefit of acquiring a good reputation, which in turn is the 44

critical quantity needed to assess evolutionary stability. This quantity is relatively easy 45

to derive under second-order social norms, where a donor’s reputation does not persist 46

beyond a single round, and it has been used to evaluate ESS [13,21,27]. Here, we 47

extend the derivation to third-order norms. By evaluating whether maintaining a good 48

reputation yields a higher long-term payoff than losing it, we can derive the necessary 49

and sufficient conditions for all evolutionarily stable social norms, regardless of the 50

cooperation level they sustain—an analysis that has been lacking. Importantly, our 51

framework does not require errors to be vanishingly rare; it applies to arbitrary error 52
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(G,G) (G,B) (B,G) (B,B)
S R(C) R(D) S R(C) R(D) S R(C) R(D) S R(C) R(D)

L1 (Standing) C 1 0 D 1 1 C 1 0 C 1 0
L2 (Consistent Standing) C 1 0 D 0 1 C 1 0 C 1 0
L3 (Simple Standing) C 1 0 D 1 1 C 1 0 D 1 1

L4 C 1 0 D 1 1 C 1 0 D 0 1
L5 C 1 0 D 0 1 C 1 0 D 1 1

L6 (Stern Judging) C 1 0 D 0 1 C 1 0 D 0 1
L7 (Staying) C 1 0 D 1 1 C 1 0 D 0 0
L8 (Judging) C 1 0 D 0 1 C 1 0 D 0 0

Table 1. The prescriptions of the leading eight. The top row (X,Y ) indicates the
reputations of the donor and the recipient, respectively. For instance, (G,B) refers to
the case of a good (G) donor who meets a bad (B) recipient. The rules S, R(C), R(D)
indicate the prescribed action, the assessment when cooperation (C) is observed, and
the assessment when defection (D) is observed, respectively. An entry of 1 means the
donor is assessed as good and 0 means the donor is assessed as bad. Those columns in
which the leading eight differ from each other are highlighted in bold text.

rates. This generalization enables us to investigate more realistic scenarios, in which 53

mistakes in assessment, action, or perception can occur. We further extend the 54

framework to analyze additional actions beyond cooperation and defection, such as 55

costly punishment [13,21]. Finally, we identify a novel class of norms that enforce a 56

fixed payoff against any mutant strategy, reminiscent of zero-determinant strategies in 57

direct reciprocity [28]. 58

The paper is organized as follows. In Section 2, we introduce the model and 59

establish useful notation. Section 3 develops our analytical framework and shows how to 60

calculate the long-term benefit of acquiring a good reputation. Using this framework, 61

we obtain the following main results: First, we derive necessary and sufficient conditions 62

for the evolutionary stability of third-order norms under various types of errors at 63

arbitrary rates. Second, we extend the framework to incorporate additional actions, 64

focusing on costly punishment. Third, we apply our results to investigate several special 65

cases (Section 4): (i) cooperative ESS in the limit of vanishing errors, (ii) cooperative 66

ESS with costly punishment in the limit of vanishing errors, (iii) stability of the leading 67

eight norms in the presence of various errors, and (iv) finally, we characterize a novel 68

class of norms, the “equalizer” norms, which enforce a fixed payoff against any mutant 69

strategy. The last section summarizes our findings and discusses their implications. 70

2 Model 71

In this study, we follow the basic framework of Ohtsuki and Iwasa [9]. We consider an 72

infinitely large population of players who interact in pairwise donation games. In each 73

round, two players are randomly chosen as a donor and a recipient, respectively. The 74

donor decides whether to cooperate (C) or to defect (D). Cooperation incurs a cost 75

c > 0 for the donor and results in a benefit b > c for the recipient. Defection leads to a 76

payoff of zero for both players. If the donation game is only played once, the donor is 77

better off by defecting, creating a social dilemma. However, here we assume that 78

population members play many donation games, against different opponents. In that 79

case, their actions can affect their reputation, which in turn may influence how they are 80

treated in future. 81

We assume reputations are binary and public. That is, the reputation of a player 82

can be either good (G) or bad (B), and it is known to all other players without any 83

disagreement. How players form reputations, and how they act based on these 84

reputations, depends on their social norm. In our study, a social norm consists of an 85
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2. the donor’s reputation is updated
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R̃(G,B,D)

Fig 1. Schematic representation of the model. At each time step, two players are
randomly chosen, one as the donor and the other as the recipient. The donor chooses an
action according to the action rule S(X,Y ), which depends on the reputation of the
donor X and the reputation of the recipient Y . After the interaction, the assessment
rule R(X,Y,A) determines the donor’s new reputation. This reputation depends on the
donor’s previous reputation X, the recipient’s previous reputation Y , and the donor’s
action A. The donor is assigned a good reputation with probability R̃(X,Y,A), which is
the effective assessment rule that accounts for errors in assessment. We repeat this
process indefinitely many times, and we are interested in the population’s long-term
behavior.

action rule and an assessment rule, as shown in Fig 1. 86

Social norms are often categorized by their order, which reflects the information on 87

which actions and assessments are based. First-order norms assess the donor’s 88

reputation based solely on the donor’s action, without considering the context or the 89

recipient’s reputation. Second-order norms take into account both the donor’s action 90

and the recipient’s reputation, enabling distinctions such as justified vs. unjustified 91

defection. The action rule depends only on the donor’s reputation in first- and 92

second-order norms. Third-order norms additionally consider the donor’s own 93

reputation, allowing for more nuanced assessments. Assessment rules and action rules in 94

third-order norms can depend on the reputations of both the donor and the recipient. 95

Following [26], we consider a stochastic version of third-order social norms in this paper. 96

A social norm’s action rule S(X,Y ) determines which action a player takes as a 97

donor. This choice might depend on the player’s own reputation X as well as on the 98

reputation Y of the recipient, where X,Y ∈ {G,B}. The output S(X,Y ) ∈ {C,D} is 99

the action that the donor takes. Here, we assume that the action rule is deterministic 100

(that is, donors cooperate with probability zero or one). This assumption is without loss 101

of generality, since stochastic action rules cannot be evolutionarily stable [26]: For a 102

given context, the best response is uniquely determined except for the special cases 103

where the expected payoffs of the two actions are equal (in which case neutral drift 104

would be possible). In the following we exclude those special cases from our analysis. 105

A social norm’s assessment rule R(X,Y,A) determines the probability that the 106

donor is assigned a good reputation after the interaction. This probability depends on 107

the previous reputation X of the donor, the previous reputation Y of the recipient, and 108

on the donor’s action A ∈ {C,D} in the donation game. When the output of an 109

assessment rule R(X,Y,A) is constrained to be either zero or one for any input 110

(X,Y,A), the norm is deterministic; otherwise it is stochastic. 111

We introduce assessment errors, which occur when new reputations are assigned. 112

With probabilities µ, the respective assignments are the opposite of the assignment 113
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prescribed by the social norm. As a result, instead of their intended assessment rules, 114

players implement the effective assessment rules 115

R̃ (X,Y,A) = (1− µ)R (X,Y,A) + µ [1−R (X,Y,A)] . (1)

In the presence of these errors, we obtain the constraint µ ≤ R̃(X,Y,A) ≤ 1−µ. When 116

µ > 0, the reputation dynamics are ergodic. This means that over time, the system 117

explores all possible reputation states and that its long-term behavior becomes 118

independent of the initial reputation configuration [26]. 119

In agreement with the seminal work of Ohtsuki and Iwasa [9, 10], we consider a 120

public assessment model. That is, all players learn the same information and share the 121

same assessment of any given population member at any point in time. These shared 122

assessments can change in time, depending on the population members’ interactions. 123

Herein, we assume players interact in sufficiently many donation games such that their 124

reputation assignments reach a stationary state. 125

In the remainder of this article, we focus on identifying which social norms are ESS. 126

We refer to the norm adopted by the majority of the population as the resident norm. 127

For positive error rates, we require the resident norm to form a strict Nash equilibrium: 128

if an infinitesimal minority of the population adopts a different norm, the minority 129

receives a strictly lower payoff than the residents. Because in the public assessment 130

model the reputation-updating mechanism is externally defined and shared at the 131

population level, individual mutants cannot change it. It is therefore sufficient to 132

consider mutants with different action rules but identical assessment rules as the 133

resident. Note that under this framework, at most two different norms can be present at 134

any time. Thus, we do not consider scenarios in which multiple action rules coexist 135

simultaneously [29]. 136

We also focus on the particularly important special case, already discussed, of social 137

norms that are not only ESS but also self-cooperative. When a self-cooperative norm is 138

adopted by everyone, the population’s cooperation rate approaches one in the limit of 139

rare errors. We refer to such norms as cooperative ESS (CESS) [10,14,26]. 140

3 Results 141

To characterize all ESS, we first describe how reputations evolve over time. As a crucial 142

measure, we obtain the equilibrium fraction of good players in the population 143

(Section 3.1). Using this equilibrium fraction, we calculate the long-term benefit of 144

acquiring a good reputation (Section 3.2). Based on these results, we derive necessary 145

and sufficient conditions for a social norm to be an ESS (Section 3.3). These conditions 146

are then naturally extended to account for other types of errors (Section 3.4) and for 147

additional actions (Section 3.5). 148

3.1 Description of the reputation dynamics 149

Consider a homogeneous population with action rule S(X,Y ) and assessment rule 150

R(X,Y,A), which together define the resident norm. At any given time t, let h(t) 151

denote the fraction of players with a good reputation. Similarly, 1−h(t) is the fraction 152

of players with a bad reputation. Then h(t) obeys the following differential equation, 153

ḣ(t) = h (t)
2
RS (G,G)

+ h (t)
(
1−h(t)

)
[RS (G,B) +RS (B,G)]

+
(
1−h (t)

)2
RS (B,B)

− h(t).

(2)
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In this expression, RS (X,Y ) is the probability to assign a good reputation to the donor 154

if the donor’s and recipient’s initial reputations are X and Y , respectively. This 155

probability is defined as 156

RS (X,Y ) ≡ R̃ (X,Y, S (X,Y )) . (3)

As t→∞, the proportion of good population members h(t) converges to a fixed point 157

h∗∈ [0, 1]. This fixed point is unique and stable, because the above equation is quadratic 158

with respect to h and because ḣ|h=1 < 0 and ḣ|h=0 > 0 when µa > 0. By plugging ḣ = 0 159

into Eq. (2), the stationary value is obtained as a solution to the quadratic equation 160

c2h
∗2 + c1h

∗ + c0 = 0, (4)

where c2, c1, and c0 are defined as 161

c2 ≡ RS (G,G)−RS (G,B)−RS (B,G) +RS (B,B)

c1 ≡ RS (G,B) +RS (B,G)− 2RS (B,B)− 1

c0 ≡ RS (B,B)

. (5)

The unique solution h∗∈ [0, 1] to the quadratic equation (4) is 162

h∗ =

{
−c1−

√
c21−4c2c0

2c2
when c2 ̸= 0

− c0
c1

when c2 = 0.
(6)

(The other solution to the quadratic equation is not in the unit interval [0, 1]). 163

At the stationary state, the probability that a donor takes action A ∈ {C,D} when 164

interacting with another member of the population is 165

pres→res
A = h∗2χA(G,G) + h∗(1−h∗) [χA(G,B) + χA(B,G)] + (1−h∗)2χA(B,B). (7)

Here, “res” refers to an individual following the resident norm, and the arrow denotes 166

donor → recipient. Thus, pres→res
A is the probability that a resident donor takes action 167

A toward a resident recipient. Moreover, χA is an indicator function defined by: 168

χA(X,Y ) ≡

{
1 if S(X,Y ) = A

0 otherwise.
(8)

In particular, for the social norm to be self-cooperative, pres→res
C must converge to one 169

as µ → 0. 170

3.2 Long-term benefit of having a good reputation 171

In the following, we derive a necessary and sufficient condition for a social norm to be 172

an ESS. To this end, we first calculate the expected long-term payoff of a player who is 173

currently assigned a good or a bad reputation, respectively. We use this expression to 174

check if the social norm’s action rule is the unique best response in all possible contexts. 175

Here, the possible contexts refer to all possible combinations of the donor’s and the 176

recipient’s reputations, (G,G), (B,G), (G,B), and (B,B). 177

Suppose there is a good player following the social norm (R,S). We consider the 178

player’s cumulative payoff for the subsequent T rounds, 179

v
(T )
G ≡

T∑

t=1

⟨π(t)
G ⟩. (9)
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Here, ⟨π(t)
G ⟩ is the expected payoff in the t-th round, given the player initially has a G 180

reputation. A round is defined as a single donation game, in which the player is the 181

donor or the recipient, each with probability 1/2. The cumulative payoff v
(T )
B for a B 182

player is defined analogously. 183

To derive an explicit expression for the cumulative payoff v
(t)
G , consider a focal player 184

with an initially good reputation. We distinguish two possible cases that could occur in 185

the player’s next game. (i) If the player happens to act as the recipient in the next 186

game, this player receives a benefit b with probability h∗χC(G,G) + (1− h∗)χC(B,G), 187

because the donor is G with probability h∗ and B with probability 1− h∗. In that case, 188

the player maintains their previous reputation. (ii) Alternatively, if the player acts as 189

the donor, this player pays the cost c with probability h∗χC(G,G) + (1− h∗)χC(G,B). 190

Now, the player’s reputation is updated according to the assessment rule R. The donor 191

is assigned a good reputation with probability RS (G,G) if they met a G recipient, and 192

with probability RS (G,B) if they met a B recipient. If they obtain a good reputation, 193

they obtain the payoff v
(T−1)
G in the subsequent T − 1 rounds. If they obtain a bad 194

reputation, their subsequent payoff is v
(T−1)
B . Overall, the expected cumulative payoff of 195

a G player is 196

v
(T )
G =

1

2
·
[
b [h∗χC (G,G) + (1− h∗)χC (B,G)] + v

(T−1)
G

]

+
1

2
·
[
− c [h∗χC (G,G) + (1− h∗)χC (G,B)]

+ h∗RS (G,G) v
(T−1)
G + (1− h∗)RS (G,B) v

(T−1)
G

+ h∗ [1−RS (G,G)] v
(T−1)
B + (1− h∗) [1−RS (G,B)] v

(T−1)
B

]
.

(10)

Similarly, the expected payoff of a B player in the subsequent T rounds is 197

v
(T )
B =

1

2
·
[
b [h∗χC (G,B) + (1− h∗)χC (B,B)] + v

(T−1)
B

]

+
1

2
·
[
− c [h∗χC (B,G) + (1− h∗)χC (B,B)]

+ h∗RS (B,G) v
(T−1)
G + (1− h∗)RS (B,B) v

(T−1)
G

+ h∗ [1−RS (B,G)] v
(T−1)
B + (1− h∗) [1−RS (B,B)] v

(T−1)
B

]
.

(11)

The difference between these two expected payoffs is 198

v
(T )
G − v

(T )
B =

1

2

[
b [h∗χC (G,∆) + (1− h∗)χC (B,∆)]

− c [h∗χC (∆, G) + (1− h∗)χC (∆, B)]

+
(
v
(T−1)
G − v

(T−1)
B

)
{1 + h∗RS (∆, G) + (1− h∗)RS (∆, B)}

]
.

(12)

Here, we use the following definitions for X ∈ {G,B} 199

χC (X,∆) ≡ χC (X,G)− χC (X,B) ,

χC (∆, X) ≡ χC (G,X)− χC (B,X) ,

RS (∆, X) ≡ RS (G,X)−RS (B,X) .

(13)

As we saw in the previous section, the system converges to a stationary state where the 200

fraction of good players is h∗ irrespective of the initial reputation configuration. 201
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Therefore, the expected payoffs in the t-th round, ⟨π(t)
G ⟩ and ⟨π(t)

B ⟩, converge to the 202

same value in the limit as t → ∞. Hence, the difference v
(T )
G − v

(T )
B approaches a 203

constant value as T becomes large. Let us define the respective limit as 204

∆v ≡ lim
T→∞

(
v
(T )
G − v

(T )
B

)
. (14)

We can obtain an implicit equation for ∆v by taking the limit T →∞ in Eq. (12). By 205

solving the resulting expression for ∆v, we obtain 206

∆v =
b [h∗χC (G,∆)+(1−h∗)χC (B,∆)]− c [h∗χC (∆, G)+(1−h∗)χC (∆, B)]

1− h∗RS (∆, G)− (1−h∗)RS (∆, B)
. (15)

The first term in the numerator can be interpreted as the expected benefit a G 207

player obtains compared to a B player. The second term is the expected cost a G player 208

additionally pays compared to a B player. The denominator indicates how long the 209

initial reputation lasts. When it takes more time steps to recover from a bad reputation, 210

RS (∆, G) and RS (∆, B) tend to be larger. With such a “sticky” social norm, the 211

denominator becomes smaller and ∆v becomes larger. In other words, being assessed as 212

G has a larger impact on the player’s long-term payoff. 213

The expression simplifies considerably for second-order norms. In these norms, 214

neither the action nor the assessment depends on the donor’s reputation. As a result, 215

RS (∆, G) = RS (∆, B) = 0 and χC (∆, G) = χC (∆, B) = 0 hold. If we further assume 216

a discriminating action rule, which prescribes cooperation for good recipients and 217

defection for bad recipients, then χC (G,∆) = χC (B,∆) = 1. In that case, Eq. (15) 218

reduces to the simple form 219

∆v = b. (16)

That is, under such a norm, the long-run advantage of a good reputation is 220

equivalent to receiving an additional benefit b in one round. 221

3.3 ESS conditions 222

A social norm is an ESS if and only if the resident action rule is the best response in all 223

possible contexts, (G,G), (B,G), (G,B), and (B,B). 224

First, let us consider the context (G,G) as an example. For S(G,G) = C to be the 225

best response, the following condition must hold: 226

−c+ R̃ (G,G,C)∆v > R̃ (G,G,D)∆v. (17)

The left-hand side of the equation is the expected payoff of a G player when they 227

cooperate, and the right-hand side is the expected payoff when they defect. The 228

equation can be simplified as follows, 229

[
R̃ (G,G,C)− R̃ (G,G,D)

]
∆v > c. (18)

The left-hand side of the equation is the expected long-term benefit of having a good 230

reputation while the right-hand side is the immediate cost of cooperation. If this 231

inequality holds, S(G,G) = C is the best response. Conversely, if the inequality is 232

reversed, S(G,G) = D is the best response. Similarly, we can analyze the other possible 233

contexts. As a result, we obtain the following characterization of ESS norms. 234

Theorem 1. A third-order social norm with assessment rule R(X,Y,A) and action 235

rule S(X,Y ) is an ESS if and only if 236





[
R̃ (X,Y,C)− R̃ (X,Y,D)

]
∆v > c if S(X,Y ) = C

[
R̃ (X,Y,C)− R̃ (X,Y,D)

]
∆v < c if S(X,Y ) = D

(19)
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holds for all possible contexts (X,Y ) ∈
{
(G,G), (G,B), (B,G), (B,B)

}
. 237

Consider ALLD (Always Defect: S(∗, G) = S(∗, B) = D) as an example. Under this 238

norm, ∆v = 0 because χC (G,∆) = χC (B,∆) = χC (∆, G) = χC (∆, B) = 0. As a 239

result, Eq. (19) is satisfied for all contexts (X,Y ) because the left-hand side evaluates 240

to zero. 241

3.4 ESS conditions with perception and implementation errors 242

So far, we have considered only assessment errors. In the following, we show how the 243

respective results can be applied to other types of errors, by rescaling the effective 244

assessment rules and the effective benefit and cost of cooperation. 245

First, we consider the case of misperception errors. Specifically, we assume that 246

when a player defects, the action is mistakenly perceived as cooperation with 247

probability ϵDC (it is correctly perceived as defection with probability 1− ϵDC). This 248

assumption may reflect, for example, that defectors have a natural incentive to deceive 249

bystanders and to misrepresent their actions. In this case of such misperception errors, 250

the effective assessment rule becomes 251

R̃ (X,Y,C)
∗ ≡ R̃ (X,Y,C)

R̃ (X,Y,D)
∗ ≡ (1− ϵDC) R̃ (X,Y,D) + ϵDCR̃ (X,Y,C) ,

(20)

for any X,Y ∈ {G,B}. The ESS conditions for the case with the perception error is the 252

same as Eq. (19), but now with the rescaled assessment rules. Similarly, we could also 253

consider other types of perception errors, such as the case where cooperations are 254

misperceived as defections. 255

Implementation errors represent another type of error that is frequently studied in 256

the literature. When actions are subject to implementation errors, individuals who 257

intend to cooperate may sometimes defect, for example because of a lack of resources. 258

Let µe be the respective (implementation) error rate. Note that here, we assume that 259

defections are always implemented perfectly, without errors. In the presence of such 260

implementation errors, the cooperation probabilities χC (X,Y ) are rescaled as 261

(1− µe)χC (X,Y ). In the above analysis, this rescaling in χC (X,Y ) is equivalent to 262

the rescaling of the effective assessment rules and the effective benefit and cost of 263

cooperation, 264

R̃ (X,Y,C)
‡ ≡ (1− µe) R̃ (X,Y,C)

∗
+ µeR̃ (X,Y,D)

∗

R̃ (X,Y,D)
‡ ≡ R̃ (X,Y,D)

∗

b‡ ≡ (1− µe) b

c‡ ≡ (1− µe) c,

(21)

Here, the effective assessment rule R̃ (X,Y,C)
‡
indicates the probability that an 265

X-donor is assigned a good reputation, given they intended to cooperate with Y . In 266

that case, the donor pays the effective cost while the recipient receives the effective 267

benefit. The ESS condition for the case with the implementation error is the same as 268

Eq. (19) but with the rescaled parameters, 269





[
R̃ (X,Y,C)

‡ − R̃ (X,Y,D)
‡
]
∆v‡ > c‡ if S(X,Y ) = C,

[
R̃ (X,Y,C)

‡ − R̃ (X,Y,D)
‡
]
∆v‡ < c‡ if S(X,Y ) = D.

(22)

Here, ∆v‡ is ∆v in Eq. (15) with the appropriately rescaled parameters. 270
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To gain insights into the effect of these errors, let us consider the L6 norm (Stern 271

Judging) as an example. According to Eq. (22), L6 is an ESS if and only if 272

b

c
>

1

(1− ϵDC) (1− µe) (1− 2µ)
. (23)

As the error rates µ, µe, and ϵDC increase, the lower bound of b/c diverges and 273

cooperation gets harder to maintain. This reproduces the results in [21]. 274

3.5 ESS conditions when other actions are available 275

We can also extend the above analysis to the case where additional actions are available. 276

As an example, we consider the case that a player can exert costly punishment (P ). In 277

that case, the donor reduces the recipient’s payoff by β > 0, at an own cost of α > 0. 278

The resulting dynamics of h∗ remains the same as Eq. (2) and the solution for h∗ is the 279

same as Eq. (6). The analysis in Section 3.1 is also valid for the case with punishment, 280

except that now we need to consider the additional action P . The expected payoff of a 281

G player in the subsequent T rounds becomes 282

v
(T )
G =

1

2
·
[
b [h∗χC (G,G) + (1− h∗)χC (B,G)]

− β[h∗χP (G,G) + (1− h∗)χP (B,G)] + v
(T−1)
G

]

+
1

2
·
[
(−c) [h∗χC (G,G) + (1− h∗)χC (G,B)]

− α [h∗χP (G,G) + (1− h∗)χP (G,B)]

+ h∗RS (G,G) v
(T−1)
G + (1− h∗)RS (G,B) v

(T−1)
G

+ h∗ [1−RS (G,G)] v
(T−1)
B + (1− h∗) [1−RS (G,B)] v

(T−1)
B

]
,

(24)

where χP (X,Y ) is the punishing probability, defined analogously to Eq. (8). The 283

difference between the expected payoffs of a G and a B player is now 284

v
(T )
G − v

(T )
B =

1

2
·

[
b [h∗χC (G,∆) + (1− h∗)χC (B,∆)]

− c [h∗χC (∆, G) + (1− h∗)χC (∆, B)]

− α [h∗χP (G,∆) + (1− h∗)χP (B,∆)]

− β [h∗χP (∆, G) + (1− h∗)χP (∆, B)]

+
(
v
(T−1)
G − v

(T−1)
B

)
{1 + h∗RS (∆, G) + (1− h∗)RS (∆, B)}

]
,

(25)

where χP (X,∆) and χP (∆, X) are defined analogously to χC (X,∆) and χC (∆, X), 285

respectively. The expected payoff difference ∆v is obtained by taking the limit of 286

T → ∞ in Eq. (25). 287

∆v =
bχC (h∗,∆)− cχC (∆, h∗)− βχP (h∗,∆)− αχP (∆, h∗)

1− h∗RS (∆, G)− (1− h∗)RS (∆, B)
, (26)

where we defined 288

χC (h∗,∆) ≡ h∗χC (G,∆) + (1− h∗)χC (B,∆)

χC (∆, h∗) ≡ h∗χC (∆, G) + (1− h∗)χC (∆, B)

χP (h∗,∆) ≡ h∗χP (G,∆) + (1− h∗)χP (B,∆)

χP (∆, h∗) ≡ h∗χP (∆, G) + (1− h∗)χP (∆, B) .

(27)
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Using ∆v, we can derive the ESS conditions for norms with punishment. The action 289

prescribed by the social norm is the unique best response for context (X,Y ) if and only 290

if both other actions yield lower payoffs. For instance, the action rule S(X,Y ) = C is 291

the best response if and only if 292

[
R̃ (X,Y,C)−R̃ (X,Y,D)

]
∆v > c and

[
R̃ (X,Y,C)−R̃ (X,Y, P )

]
∆v > c− α. (28)

Similarly, the action rule S(X,Y ) = D is the best response if and only if 293

[
R̃ (X,Y,D)−R̃ (X,Y,C)

]
∆v > −c and

[
R̃ (X,Y,D)−R̃ (X,Y, P )

]
∆v > −α. (29)

Finally, the action rule S(X,Y ) = P is the best response if and only if 294

[
R̃ (X,Y, P )−R̃ (X,Y,C)

]
∆v > α− c and

[
R̃ (X,Y, P )−R̃ (X,Y,D)

]
∆v > α. (30)

The social norm is an ESS if and only if the above conditions hold for all contexts 295

(X,Y ) ∈
{
(G,G), (G,B), (B,G), (B,B)

}
. It is straightforward to generalize the above 296

analysis to the case where further actions are available. 297

4 Special cases 298

To illustrate the scope and power of our analytical framework, we next apply it to 299

several special cases that have been central to the literature on indirect reciprocity. 300

First, we characterize cooperative ESS in the limit of vanishing errors, showing how our 301

framework recovers previous results (Section 4.1). Second, we analyze the role of costly 302

punishment in promoting cooperation (Section 4.2). Third, we study the stability of the 303

leading eight norms in the presence of errors (Section 4.3). Finally, we identify a novel 304

class of “equalizer” norms that enforce fixed payoffs against any mutant strategy 305

(Section 4.4). 306

4.1 Self-cooperative ESS in the limit of vanishing error rates 307

In this section, we focus on cooperative ESS (CESS), which are a special subset of the 308

ESS norms. A norm is a CESS if it satisfies the following two conditions in the limit of 309

vanishing error rates, 310

(a) The social norm is fully self-cooperative, i.e., pres→res
C → 1 as µ → 0+. 311

(b) The social norm is an ESS. 312

In the following, the effective assessment rule converges to the original assessment rule, 313

R̃ (X,Y,A) → R(X,Y,A), as µ → 0+. 314

First, we show that for any such CESS, either h∗ = 1 or h∗ = 0 must hold. Assume 315

to the contrary that 0 < h∗ < 1, such that there are both good and bad players in the 316

population. For the norm to be self-cooperative, the action rule then needs to prescribe 317

cooperation in all possible cases. The resulting norm of unconditional cooperation, 318

however, is not an ESS. As the two labels G and B are interchangeable [9], we consider 319

without loss of generality the case that h∗ = 1 in the following. When the respective 320

social norm is adopted by the entire population, we assume everyone is assigned a good 321

reputation eventually. 322

323
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First, we check the condition (a). To have h∗ = 1, the following conditions are necessary 324

and sufficient: 325

h∗ = 1 ⇐⇒




ḣ|h=1 = 0

dḣ
dh

∣∣∣
h=1

< 0
. (31)

The first equation on the right hand side makes sure there is a fixed point at h = 1. The 326

second inequality indicates that this fixed point is stable. By Eq. (2) these two 327

requirements are equivalent to the following conditions, 328

{
RS (G,G) = 1

RS (G,B) +RS (B,G) > 1.
(32)

Given these conditions are satisfied, the social norm is self-cooperative if and only if 329

S(G,G) = C. (33)

We conclude that the self-cooperative norms in which all population members have a 330

good reputation are exactly those that satisfy conditions (32) and (33). For 331

self-cooperative norms, h∗ = 1, Eq. (15) simplifies to 332

∆v =
bχC (G,∆)− cχC (∆, G)

1−RS (∆, G)
. (34)

333

Second, we check the ESS condition (b). To this end, we use Eq. (19) for the contexts 334

(G,G), (G,B), (B,G), and (B,B) in the following. 335

1. For the context (X,Y ) = (G,G), the ESS condition (19) is 336

[R (G,G,C)−R (G,G,D)]∆v > c

[R (G,G,C)−R (G,G,D)] {b [1− χC (G,B)]− c [1− χC (B,G)]} > cRS (B,G) ,

(35)

where we used Eqs. (32) and (33) for the derivation of the second line. For this 337

inequality to hold, χC (G,B) = 0 is necessary. Thus, 338

[R (G,G,C)−R (G,G,D)] {b− c [1− χC (B,G)]} > cRS (B,G) . (36)

2. For the context (X,Y ) = (G,B) we have shown previously that the action rule 339

must prescribe S(G,B) = D. This is the best response if and only if 340

[R (G,B,D)−R (G,B,C)]∆v > −c

[R (G,B,D)−R (G,B,C)] {b− c [1− χC (B,G)]} > −cRS (B,G) .
(37)

3. For the context (X,Y ) = (B,G), the action rule may be either S(B,G) = C or 341

S(B,G) = D. When S(B,G) = C, the best response condition is 342

[R (B,G,C)−R (B,G,D)]∆v > c

[R (B,G,C)−R (B,G,D)] {b− c [1− χC (B,G)]} > cRS (B,G) .
(38)

When S(B,G) = D, the best response condition is 343

[R (B,G,D)−R (B,G,C)]∆v > −c

[R (B,G,D)−R (B,G,C)] {b− c [1− χC (B,G)]} > −cRS (B,G) .
(39)
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4. Finally, for the context (X,Y ) = (B,B), the action rule S(B,B) = C is the best 344

response if 345

[R (B,B,C)−R (B,B,D)]∆v > c

[R (B,B,C)−R (B,B,D)] {b− c [1− χC (B,G)]} > cRS (B,G) .
(40)

When the inequality is reversed, S(B,B) = D is the best response. 346

347

To summarize, a social norm constitutes a CESS if and only if one of two conditions is 348

satisfied. These conditions are distinguished based on the value of S(B,G), that is, 349

based on the action of a bad donor who encounters a good recipient. 350

When S(B,G) = C, the CESS condition is: 351





S(G,G) = C

S(G,B) = D

S(B,G) = C

R(G,G,C) = 1

R(G,B,D) +R(B,G,C) > 1

[R (G,G,C)−R (G,G,D)] b > cR (B,G,C)

[R (G,B,C)−R (G,B,D)] b < cR (B,G,C)

[R (B,G,C)−R (B,G,D)] b > cR (B,G,C)

S(B,B) =

{
C if [R (B,B,C)−R (B,B,D)] b > cR (B,G,C)

D if [R (B,B,C)−R (B,B,D)] b < cR (B,G,C)

(41)

If the assessment rule is additionally assumed to be deterministic, this set of conditions 352

reproduces the leading-eight social norms, as shown in the top row of Table 2. They are 353

stable for b > c [26]. 354

When S(B,G) = D, the CESS condition is: 355





S(G,G) = C

S(G,B) = D

S(B,G) = D

R(G,G,C) = 1

R(G,B,D) +R(B,G,D) > 1

[R (G,G,C)−R (G,G,D)] (b− c) > cR (B,G,D)

[R (G,B,C)−R (G,B,D)] (b− c) < cR (B,G,D)

[R (B,G,C)−R (B,G,D)] (b− c) < cR (B,G,D)

S(B,B) =

{
C if [R (B,B,C)−R (B,B,D)] (b− c) > cR (B,G,D)

D if [R (B,B,C)−R (B,B,D)] (b− c) < cR (B,G,D)

(42)

If the norm is deterministic, we recover the secondary-sixteen social norms, see the 356

bottom row of Table 2. They are stable for b > 2c [26]. The leading eight and the 357

secondary sixteen are the only CESS when assessment rules are deterministic. In 358

contrast, in the stochastic case there exists a spectrum of CESS, characterized by the 359

conditions (41) and (42). 360
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(Donor rep, Recipient rep) Action rule

Reputation update

conditionbased on action

(X,Y ) S(X,Y ) C D

(G,G) C 1 0

b > c(G,B) D ∗ 1

(B,G) C 1 0

(G,G) C 1 0

b > 2c(G,B) D ∗ 1

(B,G) D ∗ 1

Table 2. Deterministic CESS in the limit of vanishing errors. The CESS can
be categorized into two classes, the leading-eight norms (top) and the secondary-sixteen
norms (bottom), respectively. In this table, the left most column indicates the original
reputations of the donor and the recipient. The second column then shows the norm’s
action rule and the third and fourth column its assessment rule. The rightmost column
gives the condition for the norm to be a CESS. The symbol ∗ indicates that the
respective value can be either 0 or 1. In this table, the assessment rule for context
(B,B) is not shown as it can be arbitrary. Given the respective entries R(B,B, ∗) and
the environmental conditions {b, c}, the optimal action S(B,B) is uniquely determined.

4.2 Self-cooperative ESS norms with punishment 361

Next we consider the CESS norms when punishment is available. Suppose the action 362

rule is 363

S(G,G) = C

S(G,B) = AGB ∈ {D,P}
S(B,G) = ABG ∈ {C,D, P}
S(B,B) = ABB ∈ {C,D, P},

(43)

Note that S(G,G) must be C and S(G,B) must not be C for the norm to be a CESS. 364

In the following, the two actions other than AGB are denoted as {A†
GB , A

††
GB}. For 365

instance, if AGB = D, then A†
GB = C and A††

GB = P (or vice versa). We define A†
BG, 366

A††
BG, A

†
BB , and A††

BB similarly. The social norm is a CESS norm if and only if the 367

following conditions are met, 368





R(G,G,C) = 1

R(G,B,AGB) +R(B,G,ABG) > 1

[R (G,G,C)−R (G,G,D)]∆v > ζC − ζD

[R (G,G,C)−R (G,G,P )]∆v > ζC − ζP[
R (G,B,AGB)−R

(
G,B,A†

GB

)]
∆v > ζAGB

− ζA†
GB[

R (G,B,AGB)−R
(
G,B,A††

GB

)]
∆v > ζAGB

− ζA††
GB[

R (B,G,ABG)−R
(
B,G,A†

BG

)]
∆v > ζABG

− ζA†
BG[

R (B,G,ABG)−R
(
B,G,A††

BG

)]
∆v > ζABG

− ζA††
BG[

R (B,B,ABB)−R
(
B,B,A†

BB

)]
∆v > ζABB

− ζA†
BB[

R (B,B,ABB)−R
(
B,B,A††

BB

)]
∆v > ζABB

− ζA††
BB

(44)
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Here, ζA is defined as the instantaneous cost of action A, 369

ζA ≡





c if A = C

0 if A = D

α if A = P.

(45)

The marginal long-term payoff ∆v is 370

∆v =





b/R (B,G,C) if (AGB , ABG) = (D,C)

(b+ β) /R (B,G,C) if (AGB , ABG) = (P,C)

(b− c) /R (B,G,D) if (AGB , ABG) = (D,D)

(b− c+ β) /R (B,G,D) if (AGB , ABG) = (P,D)

(b− c+ α) /R (B,G,P ) if (AGB , ABG) = (D,P )

(b− c+ α+ β) /R (B,G,P ) if (AGB , ABG) = (P, P ).

(46)

As special cases, the deterministic CESS norms with punishment, summarized in S1 371

Appendix, fall into six classes. 372

4.3 Leading-eight norms with non-vanishing error rate 373

We can also derive the ESS conditions for the leading-eight norms when the error rates 374

are non-vanishing. Naturally, errors make the conditions for these norms to be ESS more 375

stringent; but how does it depend on the error rates? The leading-eight norms have 376

χC (G,∆) = 1

χC (B,∆) =

{
0 for L1,L2

1 for L3–L8

χC (∆, G) = 0

χC (∆, B) =

{
−1 for L1,L2

0 for L3–L8

RS (∆, G) = 0

RS (∆, B) =





µe (1− ϵDC) (1− 2µ) for L1

(µe − ϵDC − µeϵDC) (1− 2µ) for L2

0 for L3

ϵDC (1− 2µ) for L4

−ϵDC (1− 2µ) for L5

0 for L6

1− 2µ for L7

(1− ϵDC) (1− 2µ) for L8

(47)
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Plugging those into Eq. (15), we obtain 377

∆v =





bh∗+c(1−h∗)
1−(1−h∗)(1−2µ)µe(1−ϵDC) for L1

bh∗+c(1−h∗)
1−(1−h∗)(1−2µ)(µe−ϵDC−µeϵDC) for L2

b for L3
b

1−(1−h∗)(1−2µ)ϵDC
for L4

b
1+(1−h∗)(1−2µ)ϵDC

for L5

b for L6
b

1−(1−h∗)(1−2µ) for L7
b

1−(1−h∗)(1−2µ)(1−ϵDC) for L8

(48)

Except for the second-order norms L3 and L6, these analytical expressions for ∆v 378

contain h∗. While h∗ is analytically solvable as a root of the quadratic equation, the 379

expression is not simple enough to provide intuition. However, for L3 and L6 we can 380

derive a simple ESS condition based on Eq. (19): 381

b

c
>

1

(1− 2µ) (1− µe) (1− ϵDC)
. (49)

As µ increases from zero to one half, or µe increases from zero to one, or ϵDC increases 382

from zero to one, the right-hand side diverges, indicating that the ESS condition 383

becomes increasingly hard to satisfy. 384

Interestingly, while many previous research concluded that L6 is the most successful 385

norm among the leading eight in evolutionary simulations [5, 12,30,31], L6 has exactly 386

the same ESS condition as L3. This theoretical prediction is accurately reproduced in 387

numerical calculations, as shown in Fig 2. Moreover, Eq. (48) shows that the ∆v of L6 388

is always smaller than or equal to those of L4, L7, and L8, indicating that L6 has a 389

smaller ESS parameter region. These results suggest that L6 is not the best norm in 390

terms of its ESS parameter region. The evolutionary advantage of L6 over L3 cannot be 391

explained by the size of the ESS parameter region. 392

Instead, the advantage of L6 over L3 may come from a larger payoff difference 393

between residents and mutants. In Fig 3, we show the average payoff of the mutants 394

over all possible deterministic action rules other than the residents’ action rule. Since 395

L6 has a larger payoff difference, it is better able to resist invasion by the mutants, 396

despite having the same ESS condition as L3. 397

For completeness, the results for the other leading-eight norms are shown in S1 Fig 1. 398

We compare the numerically calculated results with the theoretical predictions obtained 399

from Eq. (48), which again shows perfect agreement. According to this figure, L7 has 400

the widest ESS region, indicating its robustness against errors. 401

4.4 Equalizer norms 402

Our analysis also allows us to identify a special class of norms that enforce the mutant’s 403

payoff to be the same as the payoff of the residents, irrespective of the mutant’s action. 404

We call such a norm an “equalizer”, in analogy of the respective class of 405

zero-determinant strategies in direct reciprocity [28]. 406

To describe these norms formally, a social norm is an equalizer if and only if 407

[
R̃ (X,Y,C)− R̃ (X,Y,D)

]
∆v = c (50)

holds for all possible contexts (X,Y ) ∈
{
(G,G), (G,B), (B,G), (B,B)

}
. When this 408

condition holds, cooperation and defection yield identical expected payoffs. Therefore, 409
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the mutant’s payoff no longer depends on the mutant’s action. Such equalizer norms 410

thus form a Nash equilibrium (but they are not an ESS since they allow for neutral 411

invasion). 412

The norms described by (50) represent a generalization of the Generous Scoring 413

(GSCO) norm described by Schmid et al [25]. GSCO is a first-order norm defined by 414

S(∗, G) = C,

S(∗, B) = D,

R(∗, ∗, C) = 1,

R(∗, ∗, D) = 1− c

(1− 2µ) b
.

(51)

It is straightforward to show that GSCO is an equalizer. Irrespective of the applied 415

norm of the mutant, its payoff exactly matches the payoff of the residents. 416

There are other examples of equalizer norms. For example, for second-order norms 417

with a perfectly discriminating action rule, we have ∆v = b, see Eq. (16). Such a norm 418

is an equalizer if and only if 419

R (∗, Y, C)−R (∗, Y,D) =
c

(1− 2µ) b
(52)

for any Y ∈ {G,B}. In particular, the following is an equalizer, 420

S(∗, G) = C,

S(∗, B) = D,

R(∗, G,C) = 1,

R(∗, G,D) = 1− c

(1− 2µ) b
,

R(∗, B, C) =
c

(1− 2µ) b
,

R(∗, B,D) = 0.

(53)

To demonstrate the properties of equalizers, we present numerical examples in Fig 4. In 421

these examples, residents and mutants with different action rules receive exactly the 422

same payoffs. 423

Discussion 424

In this paper, we focus on indirect reciprocity under public assessment. Within this 425

setting, we analytically characterize all third-order evolutionarily stable norms (ESS). 426

Previously, most studies focused on ESS that are fully cooperative when error rates 427

were sufficiently small. Our analysis generalizes these results to cases where the 428

population is not fully cooperative and errors are no longer small. In this way, we 429

establish a more comprehensive foundation for the theory of indirect reciprocity. This 430

broader framework enables us to study a wider range of social norms and to investigate 431

their stability for arbitrary error rates. Moreover, it allows us to explore the effects of 432

additional actions beyond cooperation and defection – such as costly punishment. 433

Based on this framework, we obtain several important insights. First, in the limit of 434

vanishing error rates and deterministic norms, our results recover the well-known 435

leading-eight and the secondary-sixteen norms [9, 10,26]. Second, we systematically 436

derive all cooperative ESS for the case when a costly punishment option is available. 437

The corresponding results successfully reproduce previous findings for second-order 438
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social norms [13, 21]. Third, we analyze the robustness of the leading-eight norms under 439

varying error rates. This analysis shows that the two second-order norms L3 and L6 440

have exactly the same critical benefit-to-cost ratio, even though L6 is more punitive 441

against mutants than L3. Finally, we describe a novel class of norms, termed ‘equalizers’, 442

which unilaterally fix a mutant’s payoff to match that of the residents, regardless of the 443

mutant’s strategy. This is a generalization of the Generous Scoring (GSCO) norm [25] 444

and is reminiscent of the zero-determinant strategies of direct reciprocity [28]. All of 445

these analytical findings are further supported numerically (see also S1 Appendix). 446

As the main methodological innovation of our study, we focus on a key variable: the 447

long-term benefit of having a good reputation, denoted ∆v. This quantity captures the 448

advantage of maintaining a good reputation instead of getting a bad one. It provides 449

the critical basis for deriving necessary and sufficient conditions for all ESS, regardless 450

of the cooperation level they sustain. In the following, we discuss how this quantity is 451

related to previous approaches. In reinforcement learning, the value of being in a 452

certain state, referred to as the “state value function”, is calculated using the Bellman 453

equation. Ohtsuki et al. [13] apply the Bellman equation to calculate the value of being 454

good v
(T )
G in the context of costly punishment (a similar approach is used in the context 455

of repeated games, where it is often referred to as the continuation payoff). While this 456

method is versatile, a discount factor must be introduced to ensure that the 457

continuation payoff converges. A simpler approach is to calculate the difference between 458

the values of being good and bad (our ∆v), which is sufficient to determine whether a 459

norm is an ESS. Even if v
(T )
G and v

(T )
B both diverge, the difference ∆v remains finite, 460

and no discount factor is needed. 461

In Ref. [21], the relationship ∆v = b is derived for second-order norms. This 462

relationship is then used to calculate the ESS conditions when there is also a costly 463

punishment option. Ref. [26] derives the ESS conditions for fully cooperative norms. 464

There, a quantity akin to ∆v is computed assuming that the population mostly consists 465

of good players. The present paper extends those previous analyses to general 466

third-order norms. Our framework allows for analytical solutions, even when error rates 467

do not vanish and when the population is not fully cooperative. Still, our analysis relies 468

on the assumption of binary reputations. When reputations are not binary [20,32,33], 469

analytical approaches become significantly more complex. We leave this extension for 470

future work. 471

For direct reciprocity, it is possible to identify four classes of equilibrium behavior 472

among memory-1 strategies of the repeated prisoner’s dilemma [34]. In equilibrium, 473

players are either fully cooperative, fully defective, they engage in alternating 474

cooperation, or they apply equalizers. A natural question is whether the ESS norms of 475

indirect reciprocity can be categorized similarly. Our analysis, however, shows that such 476

a classification with a handful of distinct categories is infeasible. Instead, ESS norms of 477

indirect reciprocity can support arbitrary levels of cooperation. To illustrate this point, 478

consider a second-order norm using a discriminating action rule. The respective ESS 479

conditions, as given by Eq. (19), are [R̃ (∗, G,C)− R̃ (∗, G,D)]b > c and 480

[R̃ (∗, B,C)− R̃ (∗, B,D)]b < c. These inequalities constrain the differences in 481

assessment values (e.g., [R̃ (∗, G,C)− R̃ (∗, G,D)]), but not their absolute values. As a 482

result, a wide range of average cooperation levels can be realized in an ESS. 483

In our analysis, we assume that the population is monomorphic, i.e., all individuals 484

use the same social norm, and we explore whether this norm is stable against invasion 485

by rare mutants. While this is one of the most standard approaches to assess the 486

stability of social norms, it is also important to consider the evolutionary dynamics of 487

polymorphic populations, where players with multiple action rules may coexist. 488

Furthermore, another interesting direction would be to investigate multiple social norms 489

coexisting in a population. Although we leave these for future work, it would be 490
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Fig 2. ESS conditions for L3 and L6 under non-vanishing error rates. To
obtain numerical evidence, we systematically vary the assessment error rate (µ), the
perception error rate (ϵDC), and the implementation error rate (µe), for a game with
benefit b = 1 and cost c = 0.8. The respective process is described in S1 Appendix.
Regions where the ESS conditions are satisfied are shown in blue, while regions where
they are not satisfied are shown in red. The solid white line represents the theoretical
prediction based on Eq. (23). In each case, the theoretical prediction accurately
reproduces the numerical results, confirming the validity of our analysis. The figure also
highlights that the ESS conditions for L3 and L6 are identical. We repeat the same
analysis for the other leading-eight norms, L1, L2, L4, L5, L7, and L8. The respective
results are shown in S1 Fig 1.

valuable to analyze the evolutionary dynamics of polymorphic populations extending 491

the framework developed in this paper. 492

Finally, we note that our analysis is based on the assumption of “public assessments”. 493

That is, all individuals are assumed to agree on each others’ reputations. This, of course, 494

is a strong idealization. Many real-world social interactions may be more accurately 495

described by a “private assessment” model, where individuals are allowed to disagree on 496

how they view others [35–47]. Still, the public assessment model often serves as a useful 497

reference point for theoretical exploration. Moreover, as a recent study has shown, the 498

public assessment model and the private assessment model are not completely 499

independent; rather, they can be unified within a single framework [35]. In light of this 500

recent progress, we believe our analysis offers a solid foundation for advancing the 501

understanding of indirect reciprocity, including in the context of private assessments. 502
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(ADISC: S(∗, G) = D, S(∗, B) = C). As expected, the mutant’s payoff equals that of
the resident. Parameters: b = 1, c = 0.1, µ = 0.01, and µe = ϵDC = 0.0.
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present the norms that satisfy the CESS criteria and the corresponding parameter 511

regimes. 512

S1 Fig. ESS conditions of the leading eight strategies under 513

non-vanishing error rates 514

Similar to Fig. 2 of the main text, we show numerical examples of the ESS conditions 515

for the leading eight norms when error rates can be positive. Regions where the ESS 516

conditions are satisfied are shown in blue, and those where they are not satisfied are in 517

red. The theoretical predictions are shown as solid white line. Parameters: b = 1 and 518

c = 0.8. 519
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